logo cordUniversité de Liège - Centre de l'Oxygène, Recherche et Développement (CORD)

L'Oxygène et la Vie: Tome II - L'Oxygène en Pathologie des Mammifères

Mitochondries et métabolisme de l'oxygène

Seconde partie : Troubles de l'oxygénation et mitochondries

Carol Deby


 

Bibliographie

 

Adkins WK, Taylor AE. Role of xanthine oxidase and neutrophils in ischemia-reperfusion injury in rabbit lung. J Appl Physiol. 1990; 69: 2012-8.

Aldakkak M, Stowe DF, Chen Q, Lesnefsky EJ, Camara AKS. Inhibited mitochondrial respiration by amobarbital during cardiac ischaemia improves redox state and reduces matrix Ca2+ overload and ROS release. Cardiovasc Res. 2008; 77: 406-15.

Ambrosio G, Zweier JL, Duilio C, Kuppusamy P, Santoro G, Elia PP, Tritto I, Cirillo P, Condorelli M, Chiariello M, Flaherty JT. J Biol Chem. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. 1993; 268: 18532-41.

Ames A, Wright RL, Kowada M, Thurston JM, Majno G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol. 1968; 52: 437-53.

An J, Varadarajan SG, Camara A, Chen Q, Novalija E, Gross GJ, Stowe DF. Blocking Na/H exchange reduces [Na]i and [Ca2+]i load after ischemia and improves function in intact hearts. Am J Physiol Heart Circ Physiol. 2001; 281: H2398-409.

Ananthakrishnan R, Kaneko M, Hwang YC, Quadri N, Gomez T, Li Q, Caspersen C, Ramasamy R. Aldose reductase mediates myocardial ischemia-reperfusion injury in part by opening mitochondrial permeability transition pore. Am J Physiol Heart Circ Physiol. 2009; 296: H333-41.

Argaud L, GateauRoesch O, Chalabreysse L, Gomez L, Loufouat J, Thivolet-Bejui F, Robert D, Ovize M. Preconditioning delays Ca2+-induced mitochondrial permeability transition. Cardiovasc Res. 2004; 61: 115-22.

Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J, Robert D, Ovize M. Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol. 2005a; 38: 367-74.

Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M. Postconditioning inhibits mitochondrial permeability transition. Circulation 2005b; 111: 194-7.

Argaud L, Ovize M, Robert D. Mitochondria: a target to protect myocardium from ischemia-reperfusion injury. Réanimation 2006; 15: 109-16.

Armstrong JS. Mitochondria: a target for cancer therapy. Br J Pharmacol. 2006; 147(3): 239-48.

Arroyo CM, Kramer JH, Dickens BF, Weglicki WB. Identification of free radicals in myocardial ischemia/reperfusion by spin trapping with nitrone DMPO. FEBS Lett. 1987; 221: 101-4.

Asimakis G, Inners-McBride K, Conti VR, Yang CJ. Transient beta adrenergic stimulation can precondition the rat heart against post-ischaemic contractile dysfunction. Cardiovasc Res. 1994; 28: 1726-34.

Aw TY, Andersson BS, Jones DP. Suppression of mitochondrial respiratory function after short-term anoxia. Am J Physiol. 1987; 252: C362-8.

Beard T, Carrie D, Boyer MH, Boudjemaa B, Ferrières J, Delay M, Bernadet P, Thouvenot JP. [Production of oxygen free radicals in myocardial infarction treated by thrombolysis. Analysis of glutathione peroxidase, superoxide dismutase and malondialdehyde]. Arch Mal Coeur Vaiss. 1994; 87: 1289-96. En français.

Becker LC. Myocardial reperfusion Injury. J Thrombosis Thrombol. 1997; 4: 43-5.

Becker LB, Vanden Hoek TL, Shao Z, Li C, Schumacker PT. Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol Heart Circ Physiol. 1999; 277: H2240-6.

Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res. 2004; 61: 461-70.

Beckman JS, Beckman TW, Chen J, Marshall PM, Freeman BA. Apparent hydroxyl radical production from peroxynitrite. Proc Natl Acad Sci USA 1990; 87: 1620-4.

Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB. Demonstration of free radical generation in « stunned » myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert-butyl nitrone. J Clin Invest. 1988; 82(2): 476-85.

Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, McCay PB. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res. 1989; 65(3): 607-22.

Bopassa JC, Ferrera R, Gateau-Roesch O, Couture-Lepetit E, Ovize M. PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res. 2006; 69: 178-85.

Bovill JG, Sebel PS, Stanley TH. Opioid analgesics in anesthesia: with special reference to their use in cardiovascular anesthesia. Anesthesiology 1984; 61(6): 731-5.

Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword ? J Clin Invest. 1985; 76: 1713-9.

Broekemeier KM, Dempsey ME, Pfeiffer DR. Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem. 1989; 264(14): 7826-30.

Brown GC, Borutaite V. Nitric oxide and mitochondrial respiration in the heart. Cardiovasc Res. 2007; 75: 283-90. Review.

Chaitman BR, Lim MJ. No reflow and the quest to achieve optimal perfusion during the acute phase of myocardial infarction. J Am Coll Cardiol. 2004; 44(2): 313-5.

Chen J, Henderson GI, Freeman GL. Role of 4-hydroxynonenal in modification of cytochrome c oxidase in ischemia/reperfused rat heart. J Mol Cell Cardiol. 2001; 33: 1919-27.

Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ. Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion. J Pharmacol Exp Ther. 2006; 319: 1405-12.

Chen Q, Camara AK, Stowe DF, Hoppel CL, Lesnefsky EJ. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol. 2007; 292(1): C137-47.

Chi LG, Tamura Y, Hoff PT, Macha M, Gallagher KP, Schork MA, Lucchesi BR. Effect of superoxide dismutase on myocardial infarct size in the canine heart after 6 hours of regional ischemia and reperfusion: a demonstration of myocardial salvage. Circ Res. 1989; 64: 665-75.

Crompton M, Ellinger H, Costi A. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J. 1988; 255: 357-60.

Cruse JM, Lewis RE Jr, eds. Complement today. Basel: S. Karger AG, 1993.

Currie RW, Ellision JA, White RF, Feuerstein GZ, Wang X, Barone FC. Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Res. 2000; 863: 169-81.

Das DK, George A, Liu XK, Rao PS. Detection of hydroxyl radical in the mitochondria of ischemic-reperfused myocardium by trapping with salicylate. Biochem Biophys Res Commun. 1989; 165(3): 1004–9.

Das S, Cordis GA, Maulik N, Das DK. Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Physiol. 2005; 288:

da Silva MM, Sartori A, Belisle E, Kowaltowski AJ. Ischemic preconditioning inhibits mitochondrial respiration, increases H2O2 release, and enhances K+ transport. Am J Physiol Heart Circ Physiol. 2003; 285: H154-62.

Deby C, Deby-Dupont G. Intervention du peroxyde d’hydrogène dans la biosynthèse des prostanoïdes. Recherches in vitro. Bull Cl Sci Acad Roy Belg. 1979; 65: 99-107.

Deby C, Deby-Dupont G, Bacq ZM. Hypoxie, uricémie et métabolisme de l'acide arachidonique. Bull Mem Acad R Med Belg. 1981; 136(4): 226-236.

De Hert SG, Van der Linden PJ, Cromheecke S, Meeus R, ten Broecke PW, De Blier IG, Stockman BA, Rodrigus IE. Choice of primary anesthetic regimen can influence intensive care unit length of stay after coronary surgery with cardiopulmonary bypass. Anesthesiology 2004; 101: 9-20.

Delcamp TJ, Dales C, Ralenkotter L, Cole PS, Hadley RW. Intramitochondrial [Ca2+] and membrane potential in ventricular myocytes exposed to anoxia-reoxygenation. Am J Physiol. 1998; 275: H484-94.

Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA. Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 2009; 159(3): 993-1002.

Dhodda VK, Sailor KA, Bowen KK, Vemuganti R. Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J Meurochem 2004; 89(1): 73-89.

Di Lisa F, Canton M, Menabó R, Dodoni G, Bernardi P. Mitochondria and reperfusion injury. The role of permeability transition. Basic Res Cardiol. 2003; 98(4): 235-41.

Di Lisa F, Bernardi P. Mitochondria and ischemia–reperfusion injury of the heart: fixing a hole. Cardiovasc Res. 2006; 70: 191-9.

Domenicali M, Caraceni P, Vendemiale G, Grattagliano I, Nardo B, Dall’Agata M, Santoni B, Trevisani F, Cavallari A, Altomare E, Bernardi M. Food deprivation exacerbates mitochondrial oxidative stress in rat liver exposed to ischemia-reperfusion injury. J Nutr. 2001;131: 105-10.

Donzelli S, Switzer CH, Thomas DD, Ridnour LA, Espey MG, Isenberg JS, Tocchetti CG, King SB, Lazzarino G, Miranda KM, Roberts DD, Feelisch M, Wink DA. The activation of metabolites of nitric oxide synthase by metals is both redox and oxygen dependent: a new feature of nitrogen oxide signaling. Antioxid Redox Signal. 2006; 8(7-8): 1363-71.

Doussiere J, Vignais PV. Inhibition of O2 generating oxidase of neutrophils by iodonium biphenyl in a cell free system: effect of the redox state of the oxidase complex. Biochem Biophys Res Commun. 1991; 175(1): 143-51.

Downey JM, Davis AM, Cohen MV. Unraveling the mysteries of classical preconditioning. J Mol Cell Cardiol. 2005; 39: 845-8.

Downey JM, Davis AM, Cohen MV. Signaling pathways in ischemic preconditioning. Heart Fail Rev. 2007; 12: 181-8.

du Toit EF, Genis A, Opie LH, Pollesello P, Lochner A. A role for the RISK pathway and K(ATP) channels in pre- and post-conditioning induced by levosimendan in the isolated guinea pig heart. Brit J Pharmacol. 2008; 154(1): 41-50.

Edwards RJ, Saurin AT, Rakhit RD, Marber MS. Therapeutic potential of ischaemic preconditioning. Br J Clin Pharmacol. 2000; 50: 87-97.

Eeckhout E, Kern MJ. The coronary no-reflow phenomenon: a review of mechanisms and therapies. Eur Heart J. 2001; 22: 729-39.

Espey MG, Miranda KM, Thomas DD, Xavier S, Citrin D, Vitek MP, Wink DA. A chemical perspective on the interplay between NO, reactive oxygen species, and reactive nitrogen oxide species. Ann NY Acad Sci. 2002; 962: 195-206.

Ferdinandy P, Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia–reperfusion injury and preconditioning. Br J Pharmacol. 2003; 138: 532-43.

Ferrari R, Hearse DJ. Reperfusion injury: does it exist and does it have clinical relevance? J Thromb Thrombol. 1997; 4: 25-34.

Flameng W, Sukehiro S, Möllhoff R, Van Belle H, Janssen P. A new concept of long-term donor heart preservation : nucleoside transport inhibition. J Heart Lung Transplant. 1991; 10(6): 990-8.

Flögel U, Merx MW, Godecke A, Decking UK, Schrader J. Myoglobin: A scavenger of bioactive NO. Proc Natl Acad Sci USA. 2001; 98(2): 735-40.

Friedrichs GS, Kilgore KS, Manley PJ, Gralinski MR, Lucchesi BR. Effects of heparin and N-acetyl heparin on ischemia-reperfusion-induced alterations in myocardial function in the rabbit isolated heart. Circ Res. 1994; 75: 701-10.

Friebe A, Koesling D. Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res. 2003; 93: 96-105.

Gallagher KP, Buda AJ, Pace D. Failure of superoxide dismutase and catalase to alter size of infarction in conscious dogs after 3 hours of occlusion followed by reperfusion. Circulation 1986; 73: 1065-76.

Ganote CE, Seabra-Gomes R, Nayler WG, Jennings RB. Irreversible myocardial injury in anoxic perfused rat hearts. Am J Pathol. 1975; 80: 419-50.

Garlick PB, Davies MJ, Hearse DJ, Slater TF. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ Res. 1987; 61: 757-60.

Gasbarrini A, Borle AB, Farghali H, Caraceni P, Azzarone A, Starzl TE, Van Thiel DH. Relationship between intracellular adenosine triphosphate, cytosolic free calcium and cytotoxicity in hepatocytes exposed to anoxia/reoxygenation. Transplantation Proc. 1992; 24 : 2814-15.

Gateau-Roesch O, Argaud L, Ovize M. Mitochondrial permeability transition pore and postconditioning. Cardiovasc Res. 2006; 70(2): 264-73. Review.

Genda S, Miura T, Miki T, Ichikawa Y, Shimamoto K. K+ATP Channel opening is an endogenous mechanism of protection against the no-reflow phenomenon but its function is compromised by hypercholesterolemia. J Am Coll Cardiol. 2002; 40: 1339-46.

Glanemann M, Vollma B, Nussler AK, Schaefer T, Neuhaus P, Menger MD. Ischemic preconditioning protects from hepatic ischemia/reperfusion  injury by preservation of microcirculation and mitochondrial redox-state. J Hepatology 2003; 38: 59-66.

Griffiths EJ, Halestrap AP. Protection by cyclosporin A of ischemia reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol. 1993; 25: 1461-9.

Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J. 1995; 307: 93-8.

Griffiths EJ, Ocampo CJ, Savage JS, Rutter GA, Hansford RG, Stern MD, Silverman HS. Mitochondrial calcium transporting pathways during hypoxia and reoxygenation in single rat cardiomyocytes. Cardiovasc Res. 1998; 39(2): 423-33.

Grisham MB, Jourd'Heuil D, Wink DA. Nitric oxide. I. Physiological chemistry of nitric oxide and its metabolites: implications in inflammation. Am J Physiol Gastrointest Liver Physiol. 1999; 276: G315-21.

Gross ER, Hsu AK, Gross GJ. Opioid-induced cardioprotection occurs via glycogen synthase kinase beta inhibition during reperfusion in intact rat hearts. Circ Res. 2004; 94(7): 960-6.

Halestrap AP, Davidson AM. Inhibition of Ca2+-induced large amplitude swelling of liver and heart mitochondria by cyclosporin A is probably caused by the inhibitor binding to mitochondrial matrix peptidyl-prolyl cis–trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J. 1990; 268: 153-60.

Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion — a target for cardioprotection. Cardiovasc Res. 2004; 61: 372–85.

Halestrap AP, Clarke SJ, Khaliulin I. The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta 2007; 1767(8): 1007-31.

Halestrap AP. Mitochondria and reperfusion injury of the heartA holey death but not beyond salvation. J Bioenerg Biomembr. 2009; 41: 113-21.

Hare JM, Stamler JS. NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest. 2005; 115: 509-17.

Harrison MJ, Sedal L, Arnold J, Russell RW. No-reflow phenomenon in the cerebral circulation of the gerbil. J Neurol Neurosurg Psychiatry 1975; 38: 1190-3.

Hausenloy DJ, Duchen MR, Yellon DM. Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia–reperfusion injury. Cardiovasc Res. 2003; 60(3): 617-25.

Hausenloy D, Wynne A, Duchen M, Yellon D. Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 2004a; 109: 1714-7.

Hausenloy DJ, Yellon DM, Mani-Babu S, Duchen MR. Preconditioning protects by inhibiting the mitochondrial permeability transition. Am J Physiol Heart Circ Physiol. 2004b; 287: H841-9.

Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury : targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res. 2004; 61(3): 448-60. Review.

Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol. 2005a; 288(2): H971-6.

Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: A common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med. 2005b; 15: 69-75.

Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res. 2006; 70(2): 240-53.

Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: United at reperfusion. Pharmacol Therap. 2007; 116 173-91.

Hausenloy D.J, Yellon DM. Preconditioning and postconditioning: new strategies for cardioprotection. Diabetes Obes Metab. 2008; 10: 451-9.

Hearse DJ, Humphrey SM, Garlick PB. Species variation in myocardial anoxic enzyme release, glucose protection and reoxygenation damage. J Mol Cell Cardiol. 1976; 8: 329-39.

Hearse DJ, Humphrey SM, Bullock GR. The oxygen paradox and the calcium paradox: Two facets of the same problem? J Mol Cell Cardiol. 1978; 10: 641-68.

Heger J, Godecke A, Flogel U, Merx MW, Molojavyi A, Kuhn-Velten WN, Schrader J. Cardiac-specific overexpression of inducible nitric oxide synthase does not result in severe cardiac dysfunction. Circ Res.2002; 90: 93-9.

Ikeno F, Inagaki K, Rezaee M, Mochly-Rosen D. Impaired perfusion after myocardial infarction is due to reperfusion-induced δPKC-mediated myocardial damage. Cardiovasc Res. 2007 ; 73 : 699-709.

Inagaki K, Chen L, Ikeno F, Lee FH, Imahashi K, Bouley DM, Rezaee M, Yock PG, Murphy E, Mochly-Rosen D. Inhibition of delta-protein kinase C protects against reperfusion injury of the ischemic heart in vivo. Circulation 2003a; 108: 2304-7.

Inagaki K, Hahn HS, Dorn GW 2nd, Mochly-Rosen D. Additive protection of the ischemic heart ex vivo by combined treatment with delta-protein kinase C inhibitor and epsilon-protein kinase C activator. Circulation 2003b; 108(7): 869-75.

Ito H, Maruyama A, Iwakura K, Takiuchi S, Masuyama T, Hori M, Higashino Y, Fujii K, Minamino T. Clinical implications of the ‘no reflow’ phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 1996; 93: 223-8.

Iwakura K, Kawano S, Shintani Y, Yamamoto K, Kato A, Ikushima M, Tanaka K, Kitakaze M, Hori M, Higashino Y, Fujii K. Predictive factors for development of the no-reflow phenomenon in patients with reperfused anterior wall acute myocardial infarction. J Am Coll Cardiol. 2001; 38: 472-7.

Jackson RM, Russell WJ, Veal CF. Endogenous and exogenous catalase in reoxygenation lung injury. J Appl Physiol. 1992; 72: 858-64.

Jaeschke H, Farhood A, Smith CW. Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. FASEB J. 1990; 4: 3355-9.

Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KHH, Halestrap AP. Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol. 2003; 549: 513–24.

Javadov S, Choi A, Rajapurohitam V, Zeidan A, Basnakian AG, Karmazyn M. NHE-1 inhibition-induced cardioprotection against ischaemia/reperfusion is associated with attenuation of the mitochondrial permeability transition. Cardiovasc Res. 2008; 77: 416-24.

Jin ZQ, Zhou HZ, Cecchini G, Gray MO, Karliner JS. MnSOD in mouse heart: acute responses to ischemic preconditioning and ischemiareperfusion injury. Am J Physiol Heart Circ Physiol. 2005; 288: H2986-94.

Johnson N, Khan A, Virji S, Ward JM, Crompton M. Import and processing of heart mitochondrial cyclophilin D. Eur J Biochem. 1999; 263: 353-9.

Jonassen AK, Sack MN, Mjøs OD, Yellon DM. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res. 2001; 89(12): 1191-8.

Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, FishbeinKW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004; 113(11): 1535-49.

Kaminsky PM, Proctor KG. Attenuation of no-reflow phenomenon, neutrophil activation and reperfusion injury in intestinal microcirculation by topical adenosine. Circ Res. 1989; 65: 426-35.

Kanai AJ, Pearce LL, Clemens PR, Birder LA, VanBibber MM, Choi SY, de Groat WC, Peterson J. Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci USA. 2001; 98: 14126-31.

Karmazyn M, Pierce GN, Williams S. Effect of non-steroidal anti-inflammatory drugs on the hypoxic rate heart. Pharmac Exptl Therap. 1981; 218: 488-96.

Karmazyn M. Amiloride enhances postischemic ventricular recovery: possible role of Na+-H+ exchange. Am J Physiol. 1988; 255(3 Pt 2): H608-15.

Karmazyn M. Na+/H+ exchange inhibitors reverse lactate-induced depression in postischaemic ventricular recovery. Br J Pharmacol. 1993; 108(1): 50-6.

Kawano H, Hayashida T, Ohtani H, Kanda M, Koide Y, Baba T, Toda G, Shimokawa I, Yano K, Okada R. Histopathological findings of the no-reflow phenomenon following coronary intervention for acute coronary syndrome. Int Heart J. 2005; 46: 327-32.

Kelm M, Schafer S, Dahmann R, Dolu B, Perings S, Decking UK, Schrader J, Strauer BE. Nitric oxide induced contractile dysfunction is related to a reduction in myocardial energy generation. Cardiovasc Res. 1997; 36: 185–194.

Kerr PM, Suleiman MS, Halestrap AP. Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. Am J Physiol. 1999; 276: H496–502.

Kevin LG, Camara AK, Riess ML, Novalija E, Stowe DF. Ischemic preconditioning alters real-time measure of O2 radicals in intact hearts with ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2003; 284: H566-74.

Khaliulin I, Schwalb H, Wang P, Houminer E, Grinberg L, Katzeff H, Borman JB, Powell SR. Preconditioning improves postischemic mitochondrial function and diminishes oxidation of mitochondrial proteins. Free Radic Biol Med. 2004; 37: 1-9.

Khaliulin I, Clarke SJ, Lin H, Parker J, Suleiman MS, Halestrap AP. Temperature preconditioning of isolated rat hearts — a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore. J Physiol. 2007; 581: 1147-61.

Kilgore KS, Friedrichs GS, Johnson CR, Schasteen CS, Riley DP, Weiss RH, Ryan U, Lucchesi BR. Protective effects of the SOD-mimetic SC-52608 against ischemia/reperfusion damage in the rabbit isolated heart. J Mol Cell Cardiol. 1994; 26: 995-1006.

Kim KB, Chung HH, Kim MS, Rho JR. Changes in the antioxidative defense system during open heart operations in humans. Ann Thorac Surg. 1994; 58: 170–5.

Kim JS, Jin YG, Lemasters JJ. Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia–reperfusion. Am J Physiol Heart Circ Physiol. 2006; 290: H2024–34.

Kirino T. Ischemic tolerance. J Cereb Blood Flow Metab. 2002; 22: 1283-96.

Kloner RA, Ganote CE, Jennings RB. The ‘no-reflow’ phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974; 54: 1496-508.

Kloner RA. Does reperfusion injury exist in humans? J Am Coll Cardiol. 1993; 21: 537–45.

Kokura S, Wolf RE, Yoshikawa T, Granger DN, Aw TY. T-Lymphocyte–derived tumor necrosis factor exacerbates anoxia-reoxygenation–induced neutrophil–endothelial cell adhesion. Circulation Res. 2000; 86; 205-13.

Krieg T, Qin Q, Philipp S, Alexeyev MF, Cohen MV, Downey JM. Acetylcholine and bradykinin trigger preconditioning in the heart through a pathway that includes Akt and NOS. Am J Physiol Heart Circ Physiol. 2004; 287(6): H2606-11.

Krug A, du Mesnil de Rochemont , Korb G. Blood supply of the myocardium after temporary coronary occlusion. Circ Res. 1966 ; 19: 57-62.

Kukreja RC, Janin Y. Reperfusion injury : Basic concepts and protection strategies. J Thrombosis Thrombol. 1997; 4: 7-24.

Lee VY, McClintock DS, Santore MT, Budinger GR, Chandel NS. Hypoxia sensitizes cells to nitric oxide-induced apoptosis. J Biol Chem. 2002; 277(18): 16067-74.

Lesnefsky EJ, Tandler B, Ye J, Slabe TJ, Turkaly J, Hoppel CL. Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria. Am J Physiol Heart Circ Physiol. 1997; 273: H1544-54.

Lesnefsky EJ, Chen Q, Moghaddas S, Hassan MO, Tandler B, Hoppel CL. Blockade of electron transport during ischemia protects cardiac mitochondria. J Biol Chem. 2004a; 279: 47961-7.

Lesnefsky EJ, Chen S, Slabe TJ, Stoll MS, Minkler PE, Hassan MO, Tandler B, Hoppel CL. Ischemia, rather than reperfusion, inhibits respiration through cytochrome oxidase in the isolated, perfused rabbit heart : role of cardiolipin. Am J Physiol Heart Circ Physiol. 2004b; 287(1) : H258-67.

Leung AWC, Varanyuwatana P, Halestrap AP. The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem. 2008; 283: 26312-23.

Lim SY. Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc Res. 2007; 75: 530-5.

Lochner A, Genade S, Tromp E, Podzuweit T, Moolman JA. Ischemic preconditioning and the beta-adrenergic signal transduction pathway. Circulation 1999; 100(9): 958–66.

Lochner A, Marais E, Genade S, Huisamen B, du Toit EF, Moolman JA. Protection of the ischaemic heart : investigations into the phenomenon of ischaemic preconditioning. Cardiovasc J Afr. 2009; 20(1): 43-51. Review.

Loke KE, Laycock SK, Mital S, Wolin MS, Bernstein R, Oz M, Addonizio L, Kaley G, Hintze TH. Nitric oxide modulates mitochondrial respiration in failing human heart. Circulation 1999; 100: 1291-7.

Lowes DA, Thottakam BM, Webster NR, Murphy MP, Galley HF.  The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radic Biol Med. 2008; 45(11): 1559-65.

McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985; 312: 159-63.

Marcoff L, Thompson PD. The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol. 2007; 49(23): 2231-7. Review.

Mason RB, Pluta RM, Walbridge S, Wink DA, Oldfield EH, Boock R.J. Production of reactive oxygen species after reperfusion in vitro and in vivo: protective effect of nitric oxide. J Neurosurg. 2000; 93: 99-107.

Miura T, Miki T. ATP-sensitive K+ channel openers: old drugs with new clinical benefits for the heart. Curr Vasc Pharmacol. 2003; 1(3): 251-8.

Miyamae M, Camacho SA, Weiner MW, Figueredo VM. Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+]m overload in rat hearts. Am J Physiol Heart Circ Physiol. 1996; 271: H2145-53.

Miyamoto S, Murphy AN, Brown JH. Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ. 2008; 15: 521-9.

Molyneux SL, Florkowski CM, George PM, Pilbrow AP, Frampton CM, Lever M, Richards AM. Coenzyme Q10: An independent predictor of mortality in chronic heart failure. J Amer Coll Cardiol. 2008; 52: 1435-41.

Moolman JA, Hartley S, van Wyk J, Marais E, Lochner A. Inhibition of myocardial apoptosis by ischaemia and beta-adrenergic preconditioning is dependent on p38 MAPK. Cardiovasc Drugs Therap. 2006; 20: 13-25.

Murphy E, Perlman M, London RE, Steenbergen C. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res. 1991; 68: 1250-8.

Murphy E, Steenbergen C. Preconditioning: the mitochondrial connection. Annu Rev Physiol. 2007; 69: 51-67.

Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia–reperfusion injury. Physiol Rev. 2008; 88: 581-609.

Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74: 1124-36.

Namekata I, Shimada H, Kawanishi T, Tanaka H, Shigenobu K. Reduction by SEA0400 of myocardial ischemia-induced cytoplasmic and mitochondrial Ca2+ overload. Eur J Pharmacol. 2006; 543: 108-15.

Napier I, Ponka P, Richardson DR. Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood 2005; 105(5): 1867-74.

Nasa Y, Yabe K, Takeo S. Beta-adrenoceptor stimulation-mediated preconditioning-like cardioprotection in perfused rat hearts. J Cardiovasc Pharmacol. 1997; 29: 436-43.

Naslund U, Haggmark S, Johansson G, Marklund SL, Reiz S, Oberg A. Superoxide dismutase and catalase reduce infarct size in a porcine myocardial occlusion-reperfusion model. J Mol Cell Cardiol. 1986; 18: 1077-84.

Nazareth W, Yafei N, Crompton M. Inhibition of anoxia-induced injury in heart myocytes by cyclosporin-A. J Mol Cell Cardiol. 1991; 23: 1351-4.

Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol. 1974; 36: 413-59.

Ohlmann A, Giffhorn-Katz S, Becker I, Katz N, Immenschuh S. Regulation of heme oxygenase-1 gene expression by anoxia and reoxygenation in primary rat hepatocyte cultures. Exp Biol Med. 2003; 228: 584-9.

Oldenburg O, Qin Q, Krieg T, Yang XM, Philipp S, Critz SD, Cohen MV, Downey JM. Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am J Physiol Heart Circ Physiol. 2004;286: H468-76.

Opie LH. Metabolism of the heart in health and disease. II. Am Heart J. 1969; 77(1): 100-22. Review.

O’Rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res. 2004; 94(4): 420-32. Review.

Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007; 87: 315-424.

Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Serena D, Ruggiero FM. Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radic Biol Med. 1999; 27(1-2): 42-50.

Paradies G, Petrosillo G, Pistolese M, Ruggiero FM. The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles. FEBS Lett. 2000; 466(2-3): 323-6.

Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM. Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart : involvement of reactive oxygen species and cardiolipin. Circ Res. 2004; 94(1): 53-9

Park JL, Lucchesi BR. Mechanisms of myocardial reperfusion injury. Ann Thorac Surg. 1999; 68: 1905-12.

Patel HH, Ludwig LM, Fryer RM, Hsu AK, Warltier DC, Gross GJ. Delta opioid agonists and volatile anesthetics facilitate cardioprotection via potentiation of K+ATP channel opening. FASEB J. 2002; 16: 1468-70.

Penna C, Mancardi D, Rainmondo S, Geuna S, Pagliaro P. The paradigm of postconditioning to protect the heart. J Cell Mol Med. 2008; 12: 435-58.

Penna C, Mancardi D, Rastaldo R, Pagliaro P. Cardioprotection: a radical view. Free radicals in pre and postconditioning. Biochim Biophys Acta 2009a; 1787(7): 781-93.

Penna C, Perrelli MG, Raimondo S, Tullio F, Merlino A, Moro F, Geuna S, Mancardi D, Pagliaro P. Postconditioning induces an anti-apoptotic effect and preserves mitochondrial integrity in isolated rat hearts. Biochim Biophys Acta 2009b; 1787(7): 794-801.

Petrosillo G, Ruggiero FM, Di Venosa N, Paradies G. Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB J. 2003a; 17(6): 714-6.

Petrosillo G, Ruggiero FM, Paradies G. Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J. 2003b; 17(15): 2202-8.

Petrosillo G, Ruggiero FM, Pistolese M, Paradies G. Ca2+-induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)-dependent and MPT-independent mechanisms: role of cardiolipin. J Biol Chem. 2004; 279(51): 53103-8.

Petrosillo G, Di Venosa N, Ruggiero FM, Pistolese M, D’Agostino D, Tiravanti E, Fiore T, Paradies G. Mitochondrial dysfunction associated with cardiac ischemia/reperfusion can be attenuated by oxygen tension control. Role of oxygen-free radicals and cardiolipin. Biochim Biophys Acta 2005 ; 1710: 78-86.

Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, Macia C, Raczka F, Sportouch C, Gahide G, Finet G, André-Fouët X, Revel D, Kirkorian G, Monassier JP, Derumeaux G, Ovize M. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008; 359(5): 473-81.

Piper HM, Noll T, Siegmund B. Mitochondrial function in the oxygen depleted and reoxygenated mitochondrial cell. Circ Res. 1994; 28: 1-15.

Piper HM, Garcia –Dorado D, Ovize M. A fresh look at reperfusion injury. Cardiovasc Res. 1998; 38(2): 291-300. Review.

Piper HM, Abdallah Y, Schafer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res. 2004; 61: 365-71.

Quinlan CL, Costa AD, Costa CL, Pierre SV, Dos Santos P, Garlid KD. Conditioning the heart induces formation of signalosomes that interact with mitochondria to open mitoKATP channels. Am J Physiol Heart Circ Physiol. 2008; 295: H953-61.

Ratych RE, Chuknyisha RS, Bulkley GB. The primary localization of free radical generation after anoxia/reoxygenation in isolated endothelial cells. Surgery (St Louis) 1987; 102: 122-31.

Reffelmann T, Kloner RA. The "no-reflow" phenomenon: basic science and clinical correlates. Heart 2002; 87: 162 - 168.

Reffelmann T, Hale S L, Dow JS, Kloner RA. No-reflow phenomenon persists long-term after ischemia/reperfusion in the rat and predicts infarct expansion. Circulation 2003; 108: 2911-7.

Reffemann T, Kloner RA. Microvascular alterations after temporary coronary artery occlusion: the no-reflow phenomenon. J Cardiovasc Pharmacol Therapeut. 2004; 9: 163-72.

Reffelmann T, Kloner RA. The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion. Basic Res Cardiol. 2006; 101: 359-72.

Reinartz M, Ding Z, Flogel U, Godecke A, Schrader J. Nitrosative stress leads to protein glutathiolation, increased S-nitrosation, and up-regulation of peroxiredoxins in the heart.
J Biol Chem. 2008; 283: 17440-9.

Ridnour LA, Thomas DD, Mancardi D, Donzelli S, Paolocci N, Pagliaro P, Miranda KM, Krishna MC, Fukuto J, Grisham MB, Mitchell JB, Espey MG, Wink DA. Antioxidant properties of nitric oxide in cellular physiological and pathophysiological mechanisms. The implications of biological balance between NO and oxidative stress. Curr Med Chem — Anti-Inflammatory & Anti-Allergy Agents 2004a; 3: 181-8.

Ridnour LA, Thomas DD, Mancardi D, Espey MG, Miranda KM, Paolocci N, Feelisch M, Fukuto J, Wink DA. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem. 2004b; 385(1): 1-10. Review.

Roberts MJ, Young IS, Trouton TG, Trimble ER, Khan MM, Webb SW, Wilson CM, Patterson GC, Adgey AA. Transient release of lipid peroxides after coronary artery balloon angioplasty. Lancet 1990; 336(8708): 143-5.

Robinet A, Hoizey G, Millart H. PI3-kinase, protein kinase C, and protein kinase A are involved in the trigger phase of beta1-adrenergic preconditioning. Cardiovasc Res. 2005; 66: 530-42.

Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR. Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 1983; 67: 1016-23.

Ronson RS, Nakamura M, Vinten-Johansen J. The cardiovascular effects and implications of peroxynitrite. Cardiovasc Res. 1999; 44: 47-59.

Rosenfeldt F, Marasco S, Lyon W, Wowk M, Sheeran F, Bailey M, Esmore D, Davis B, Pick A, Rabinov M, Smith J, Nagley P, Pepe S. Coenzyme Q10 therapy before cardiac surgery improves mitochondrial function and in vitro contractility of myocardial tissue. J Thorac Cardiovasc Surg. 2005; 129: 25-32.

Rosenkranz ER, Buckberg GD. Myocardial protection during surgical coronary reperfusion. J Am Coll Cardiol. 1983; 1: 1235-46

Rouslin W. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis. Am J Physiol Heart Circ Physiol. 1983; 244: H743-8.

Rundek T, Naini A, Sacco R, Coates K, DiMauro S. Atorvastatin decreases the coenzyme Q10 level in the blood of patients at risk for cardiovascular disease and stroke. Arch Neurol. 2004; 61(6): 889-92.

Schinzel AC, Takeuchi O, Huang ZH, Fisher JK, Zhou ZP, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA. 2005; 102: 12005-10.

Schneider N, Lejeune JP, Deby C, Deby-Dupont G, Serteyn D. Viability of equine articular chondrocytes in alginate beads exposed to different oxygen tensions. Vet J. 2004; 168(2): 167-73.

Schofer J, Montz R, Mathey D. Scintigraphic evidence of the ‘no-reflow’ phenomenon in human beings after coronary thrombolysis. J Am Coll Cardiol. 1985; 5: 593-8.

Schreiber SL, Crabtree GR. The mechanism of action of cyclosporin-A and FK506. Immunol Today 1992; 13: 136-42.

Schulman D, Latchman DS, Yellon DM. Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol. 2002; 283(4): H1481-8.

Schwertz H, Carter JM, Abdudureheman M, Russ M, Buerke U, Schlitt A, Müller-Werdan U, Prondzinsky R, Werdan K, Buerke M. Myocardial ischemia/reperfusion causes VDAC phosphorylation which is reduced by cardioprotection with a p38 MAP kinase inhibitor. Proteomics 2007; 7: 4579-88.

Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med. 2007; 204(9): 2089-102.

Silverman HS. Mitochondrial free calcium regulation in hypoxia and reoxygenation: relation to cellular injury. Basic Res Cardiol. 1993; 88: 483-94.

Simpson PJ, Todd RF 3rd, Fantone JC, Mickelson JK, Griffin JD, Lucchesi BR. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mo1, anti-CD11b) that inhibits leukocyte adhesion. J Clin Invest. 1988; 81(2): 624-9.

Smith RAJ, Porteous CM, Coulter CV, Murphy MP. Targeting an antioxidant to mitochondria. Eur J Biochem. 1999; 263: 709-16.

Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I, Aupetit JF, Bonnefoy E, Finet G, Andre-Fouet X, Ovize M. Postconditioning the human heart. Circulation 2005; 112: 2143-8.

Stern MD, Chien AM, Capogrossi MC, Pelto DJ, Lakatta EG. Direct observation of the ‘‘oxygen paradox’’ in single rat ventricular myocytes. Circ Res. 1985; 56: 899-903.

Taggart DP, Jenkins M, Hooper J, Hadjinikolas L, Kemp M, Hue D, Bennett G. Effects of short-term supplementation with coenzyme Q10 on myocardial protection during cardiac operations. Ann Thorac Surg. 1996; 61: 829-33.

Talukder MA, Zweier JL, Periasamy M. Targeting calcium transport in ischaemic heart disease. Cardiovasc Res. 2009; 84(3): 345-52.

Tamura K, Kobara M, Nakae T, Gouda E, Tatsumi T, Matsubara H, Nakata T. Mitochondrial KATP channel opener attenuates Ca overload-induced myocyte apoptosis. J Cardiac Failure 2005; 11(9, Supplement 1): S316.

Tanaka J, Tominage R, Yoshioshi M, Matsui K, Komori M, Sere A, et al.  Coenzyme Q10 (the prophylactic effect on low cardiac out put following cardiac valve replacement). Ann Thorac Surg. 1982; 33(2): 145-51.

Tanaka-Esposito C, Chen Q, Moghaddas S, Lesnefsky EJ. Ischemic preconditioning does not protect via blockade of electron transport. J Appl Physiol. 2007; 103: 623-8.

Tang XL, Sato H, Tiwari S, Dawn B, Bi Q, Li Q, Shirk G, Bolli R. Cardioprotection by postconditioning in conscious rats is limited to coronary occlusions 45 min. Am J Physiol Heart Circ Physiol. 2006; 291: H2308-17.

Tauskela JS. MitoQ—a mitochondria-targeted antioxidant. IDrugs 2007; 10: 399-412.

Therade-Matharan S, Laemmel E, Carpentier S, Obata Y, Levade T, Duranteau J, Vicaut E. Reactive oxygen species production by mitochondria in endothelial cells exposed to reoxygenation after hypoxia and glucose depletion is mediated by ceramide. Am J Physiol Regul Integr Comp Physiol. 2005; 289(6): R1756-62.

Thomson IR, Harding G, Hudson RJ. A comparison of fentanyl and sufentanil in patients undergoing coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2000; 14: 652-6.

Tong H, Chen W, Steenbergen C, Murphy E. Ischemic preconditioning activates phosphatidylinositol-3-kinase upstream of protein kinase C. Circ Res. 2000; 87(4): 309-15.

Tong H, Imahashi K, Steenbergen C, Murphy E. Phosphorylation of glycogen synthase kinase-3beta during preconditioning through phosphatidyl inositol-3-kinase-dependent pathway is cardioprotective. Circ Res. 2002; 90 : 377-9.

Townsend PA, Davidson SM, Clarke SJ, Khaliulin I, Carroll CJ, Scarabelli TM, Knight RA, Stephanou A, Latchman DS, Halestrap AP. Urocortin prevents mitochondrial permeability transition in response to reperfusion injury indirectly, by reducing oxidative stress. Am J Physiol. 2007; 293: H928-38.

Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980; 191: 421-7.

Ueta H, Ogura R, Sugiyama M, Kagiyama A, Shin G. O2 spin trapping on cardiac subsarcolemmal mitochondria associated with ischemia. J Mol Cell Cardiol. 1990; 22: 893-9.

Uraizee A, Reimer KA, Murry CE. Failure of superoxide dismutase to limit size of myocardial infarction after 40 minutes of ischemia and 4 days of reperfusion in dogs. Circulation 1987; 75: 1237-48.

Vaughan WG, Horton JW, Walker PB. Allopurinol prevents intestinal permeability changes after ischemia-reperfusion injury. J Pediatr Surg. 1992; 27: 968-73.

Venturini CM, Schaer GL. Does « Lethal Reperfusion Injury» exist ? J Thrombosis Thrombol. 1997; 4: 51-3.

Villa LM, Salas E,. Darley-Usmar VM, Radomski MW, Moncada S. Peroxynitrite induces both vasodilatation and impaired vascular relaxation in the isolated perfused rat heart. Proc Natl Acad Sci USA 1994; 91: 12383-7.

Vinten-Johansen J. Postconditioning: a mechanical maneuver that triggers biological and molecular cardioprotective responses to reperfusion. Heart Fail Rev. 2007; 12(3-4): 235-44.

Weber NC, Schlack W. Inhalational anaesthetics and cardioprotection. In : Modern Anesthetics. Handbook of Experimental Pharmacology. Springer-Verlag, Berlin, Heidelberg, 2008, pp. 187-207.

Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res. 2003; 93: 292-301.

Werns SW, Lucchesi BR. Leukocytes, oxygen radicals, and myocardial injury due to ischemia and reperfusion. Free Radic Biol Med. 1988; 4(1): 31-7. Review.

Whitmer JT, Idell-Wenger JA, Rovetto MJ, Neely JR. Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem. 1978; 253: 4305-9.

Willis RA, Folkers K, Tucker JL, Ye CQ, Xia LJ, Tamagawa H. Lovastatin decreases coenzyme Q levels in rats. Proc Natl Acad Sci USA. 1990; 87(22): 8928-30.

Wilson GJ, Diaz RJ. The myocardial no-reflow phenomenon : role of δPKC. Cardiovasc Res. 2007; 73: 623-5.

Wink DA, Nims RW, Darbyshire JF, Christodoulou D, Hanbauer I, Cox GW, Laval F, Laval J, Cook JA, Krishna MC, Degraff WG, Mitchell JB. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem Res Toxicol. 1994; 7: 519-25.

Wink DA, Feelisch M, Fukuto J, Chistodoulou D, Jourd'heuil D, Grisham MB, Vodovotz Y, Cook JA, Krishna M, DeGraff WG, Kim S, Gamson J, Mitchell JB. The cytotoxicity of nitroxyl: possible implications for the pathophysiological role of NO. Arch Biochem Biophys. 1998; 351: 66-74.

Wink DA, Mitchell JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998; 25: 434-56.

Wink DA, Vodovotz Y, Grisham MB, DeGraff W, Cook JC, Pacelli R, Krishna M, Mitchell JB. Antioxidant effects of nitric oxide. Methods Enzymol. 1999; 301: 413-24.

Wirth D, Gustin P, Drion PV, Dessy-Doize C, Christians ES. Les protéines de choc thermique (heat shock proteins). I : Classification, structure, fonctions et implications dans
les processus pathologiques. Ann. Méd. Vét., 2002, 146, 201-216

Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O'Rourke B.Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane. Science 2002; 298(5595): 1029-33.

Yaguchi Y, Satoh H, Wakahara N, Katoh H, Uehara A, Terada H, Fujise Y, Hayashi H. Protective effects of hydrogen peroxide against ischemia/reperfusion injury in perfused rat hearts. Circ J. 2003; 67: 253-8.

Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004; 44: 1103-10.

Yasojima K, Kilgore KS, Washington RA, Lucchesi BR, McGeer PL. Complement gene expression by rabbit heart: upregulation by ischemia and reperfusion. Circ Res. 1998a; 82: 1224-30.

Yasojima K, Schwab C, McGeer EG, McGeer PL. Human heart generates complement proteins that are upregulated and activated after myocardial infarction. Circ Res. 1998b; 83: 860-9.

Zhao G, Al-Mehdi AB, Fisher AB. Anoxia-reoxygenation versus ischemia in isolated rat lungs. Am J Physiol Lung Cell Mol Physiol. 1997; 273: L1112-7.

Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003; 285: H579-88.

Zhao J-L, Yang Y-J, Pei W-D, Sun Y-H, You S-J, Gao R-L. Remote periconditioning reduces myocardial no-reflow by the activation of KATP channel via inhibition of Rho-kinase. Int J Cardiology 2009; 133: 179-84.

Zuurbier CJ, Eerbeek O, Meijer AJ. Ischemic preconditioning, insulin, and morphine all cause hexokinase redistribution. Am J Physiol. 2005; 289: H496–9.

Zweier JL, Flaherty JT, Weisfeldt ML. Direct Measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 1987; 84: 1404-7.

Zweier JL. Measuremement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechaism of reperfusion inyury. J Biol Chem. 1988; 263(3): 1353-7.

Zweier JL, Broderick R, Kuppusamy P, Thompson-Gorman S, Lutty GA. Determination of the mechanisms of free radical generation in human aortic endothelial cells exposed to anoxia and reoxygenation. J Biol Chem. 1994 ; 269 : 24156-62.


Troubles de l'oxygénation et mitochondries - Sommaire
Mitochondrie et oxygénation - Sommaire
Mitochondries et métabolisme de l'oxygène - Introduction
Courrier

 

retour à la page d'accueil
retour à la page L'oxygène en pathologie des mammifères
retour à l'Initiation au métabolisme de l'oxygène