logo cordUniversité de Liège - Centre de l'Oxygène, Recherche et  Développement (CORD)

L'oxygène et la vie: tome II - L'oxygène en pathologie des mammifères

Importance des mitochondries dans le métabolisme de l’oxygène

Première partie : Mitochondries et oxygénation

Carol Deby


Bibliographie

Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell. 2002; 9: 423-32.

Acuña-Castroviejo D, Escames G, León J, Carazo A, Khaldy H. Mitochondrial regulation by melatonin and its metabolites. Adv Exp Med Biol. 2003; 527: 549-57.

Adachi T, Pimentel DR, Heibeck T, Hou X, Lee YJ, Jiang B, Ido Y, Cohen RA. S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J Biol Chem. 2004; 279(28): 29857-62.

Adrain C, Slee EA, Harte MT, Martin SJ. Regulation of apoptotic protease activating factor-1 oligomerization and apoptosis by the WD-40 repeat region J Biol Chem. 1999; 274: 20855-60.

Aiken KJ, Bickford JS, Kilberg MS, Nick HS. Metabolic regulation of manganese superoxide dismutase expression via essential amino acid deprivation. J Biol Chem. 2008; 283: 10252-63.

Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP 4th, Boyd AE 3rd, González G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 1995; 268(5209): 423-6.

Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. Garland Science ed., New York, 2002, p.790.

Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J. Human ICE/CED-3 protease nomenclature. Cell 1996; 87: 171.

Alvarez S, Valdez LB, Zaobornyj T, Boveris A. Oxygen dependence of mitochondrial nitric oxide synthase activity. Biochem Biophys Res Comm. 2003; 305: 771-5.

Alvarez S, Boveris A. Mitochondrial nitric oxide metabolism in rat muscle during endotoxemia. Free Radic Biol Med. 2004; 37: 1472-8.

Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995; 15: 961-73.

Aon MA, Cortassa S, Marbán E, O’Rourke B. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem. 2003; 278: 44735-44.

Aon MA, Cortassa S, Maack C, O’Rourke B. Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. J Biol Chem. 2007; 282: 21889-900.

Arai M, Imaia H, Sumia D, Imanakab T, Takanob T, Chibac N, Nakagawa Y. Import into mitochondria of phospholipid hydroperoxide glutathione peroxidase requires a leader sequence. Biochem Biophys Res Commun. 1996; 227: 433-9.

Arnoult D, Parone P, Martinou JC, Antonsson B, Estaquier J, Ameisen JC. Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli. J Cell Biol. 2002; 159: 923-9.

Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC, Goubern M, Surwit R, Bouillaud F, Richar D, Collins S, Ricquier D. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet. 2000; 26: 435-9.

Atlante A, Calissano P, Bobba A, Azzariti A, Marra E, Passarella S. Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J Biol Chem. 2000; 275(47): 37159-66.

Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem. 1997; 272(1): 217-21.

Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005; 434: 658-62.

Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol. 2007; 9: 550-5.

Bao Q, Shi Y. Apoptosome : a platform for the activation of initiator caspases. Cell Death Differentiation 2006; 14: 56-65.

Barrett WC, DeGnore JP, Keng YF, Zhang ZY, Yim MB, Chock PB. Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein tyrosine phosphatase 1B. J Biol Chem. 1999; 274: 34543-6.

Barrett LE, Van Bockstaele EJ, Sul JY, Takano H, Haydon PG, Eberwine JH. Elk-1 associates with the mitochondrial permeability transition pore complex in neurons. Proc Natl Acad Science USA 2006; 103(13): 5155-60.

Barrientos A, Moraes CT. Titrating the effects of mitochondrial complex I impairment in the cell physiology. J Biol Chem. 1999; 274(23): 16188-97.

Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P. Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem. 2005; 280: 18558-61.

Basso E, Petronilli V, Forte MA, Bernardi P. Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J Biol Chem. 2008; 283: 26307-11.

Bayir H, Fadeel B, Palladino MJ, Witasp E, Kurnikov IV, Tyurina YY, Tyurin VA, Amoscato AA, Jiang J, Kochanek PM, DeKosky ST, Greenberger JS, Shvedova AA, Kagan VE. Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. Biochim Biophys Acta 2006; 1757(5-6): 648-59.

Beavis AD, Garlid KD. Evidence for the existence of an inner membrane anion channel in mitochondria. Biochim Biophys Acta 1986; 853: 187-204.

Beavis AD. Properties of the inner membrane anion channel in intact mitochondria. J Bioenerg Biomembr. 1992; 24: 77-90.

Beavis AD, Powers M. Temperature dependence of the mitochondrial inner membrane anion channel: the relationship between temperature and inhibition by magnesium. J Biol Chem. 2004; 279(6): 4045-50.

Beck V, Jaburek M, Demina T, Rupprecht A, Porter RK, Jezek P, Pohl EE. Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers. FASEB J. 2007; 21: 1137-44.

Beckman JS. Physiological and pathological chemistry of nitric oxide. In: Nitric oxide, principles and actions. J Lancaster, ed., Academic Press, 1996, p. 25.

Beer SM, Taylor ER, Brown SE, Dahm CC, Costa NJ, Runswick MJ, Murphy MP. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant defense. J Biol Chem. 2004; 279(46): 47939-51.

Belikova NA, Vladimirov YA, Osipov AN, Kapralov AA, Tyurin VA, Potapovich MV, Basova LV, Peterson J, Kurnikov IV, Kagan VE. Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Biochemistry 2006; 45(15): 4998-5009.

Benz R. Structure and function of mitochondrial (Eukaryotic) porins. New York, Wiley, 2004.

Bernardi P. Modulation of the mitochondrial cyclosporin-A-sensitive permeability transition pore by the proton electrochemical gradient — evidence that the pore can be opened by membrane depolarization. J Biol Chem. 1992; 267: 8834-9.

Bernardi P, Broekemeier KM, Pfeiffer DR. Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr. 1994; 26(5): 509-17.

Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev. 1999; 79: 1127-55.

Bernardi P, Scorrano L, Colonna R, Petronilli V, DiLisa F. Mitochondria and cell death — mechanistic aspects and methodological issues. Eur J Biochem. 1999; 264: 687-701.

Bernardi P, Krauskopf A, Basso E, Petronilli V, Blalchy Dyson E, DiLisa F, Forte MA. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 2006; 273: 2077-99.

Berndt C, Lillig CH, Holmgren A. Thiol-based mechanisms of the thioredoxin and glutaredoxin system implications for diseases of the cardiovascular system. Am J Physiol Heart Circ Physiol. 2007; 293: H1227-36.

Best SM. Viral subversion of apoptotic enzymes: escape from death row. Annu Rev Microbiol. 2008; 62: 171-92.

Beutner G, Ruck A, Riede B, Brdiczka D. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta 1998; 1368: 7-18.

Biasutto L, Mattarei A, Marotta E, Bradaschia A, Sassi N., Garbisa S, Zoratti M, Paradisi C. Development of mitochondria-targeted derivatives of resveratrol. Bioorg Med Chem Lett. 2008; 18: 5594-7.

Bindoli A, Callegaro MT, Barzon E, Benetti M, Rigobello MP. Influence of the redox state of pyridine nucleotides on mitochondrial sulfhydryl groups and permeability transition. Arch Biochem Biophys. 1997; 342: 22-8.

Biswasa S, Chidab AS, Rahman I. Redox modifications of protein–thiols: emerging roles in cell signaling. Biochem Pharmacol. 2006; 71: 551-64.

Björnstedt M, Hamberg M, Kumar S, Xue J, Holmgren A. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J Biol Chem. 1995; 270(20): 11761-4.

Björnstedt M, Kumar S, Björkhem L, Spyrou G, Holmgren A. Selenium and the thioredoxin and glutaredoxin systems. Biomed Environ Sci. 1997; 10(2-3): 271-9.

Blanc J, Alves-Guerra MC, Esposito B, Rousset S, Gourdy P, Ricquier D, Tedgui A, Miroux B, Mallat Z. A protective role of uncoupling protein 2 in atherosclerosis. Circulation 2003; 107; 388-90.

Bohnert M, Pfanner N, van der Laan M. A dynamic machinery for import of mitochondrial precursor proteins. FEBS Lett. 2007; 581: 2802-10.

Boosalis MG. The role of selenium in chronic disease. Nutr Clin Pract. 2008; 23(2): 152-60. Review.

Borutaite V, Morkuniene R, Brown GC. Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca2+-induced inhibition of substrate oxidation. Biochim Biophys Acta 1999; 1453: 41-8.

Boveris A, Cadenas E, Stoppani AOM. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J. 1976; 156: 435-44.

Boveris A, Costa LE, Poderoso JJ, Carreras MC, Cadenas E. Regulation of mitochondrial respiration by oxygen and nitric oxide. Ann N Y Acad Sci USA 2000; 899: 121-35.

Brady NR, Hamacher-Brady A, Westerhoff HV, Gottlieb RA. A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria. Antioxid Redox Signal. 2006;8: 1651-65.

Brand MD, Pamplona R, Portero-Otin M, Requena JR, Roebuck SJ, Buckingham JA, Clapham JC, Cadenas S. Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice underexpressing or overexpressing uncoupling protein 3. Biochem J. 2002; 368: 597-603.

Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med. 2004; 37(6): 755-67.

Brandt U, Kerscher S, Dro S, Zwicker K, Zickermann V. Proton pumping by NADH:ubiquinone oxidoreductase. A redox driven conformational change mechanism? Minireview. FEBS Lett. 2003; 545: 9-17.

Brandt U. Energy converting NADH:quinone oxidoreductase (Complex I). Annu Rev Biochem. 2006; 75: 69-92

Brenner C, Cadiou H, Vieira HLA, et al. Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 2000; 19: 329-36.

Broekemeier KM, Pfeiffer DR. Inhibition of the mitochondrial permeability transition by cyclosporin a during long time frame experiments: relationship between pore opening and the activity of mitochondrial phospholipases. Biochemistry 1995; 34: 16440-9.

Brookes P, Darley-Usmar VM. Hypothesis: the mitochondrial NO signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase. Free Radic Biol Med. 2002; 32(4): 370-4.

Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu S. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004; 287: C817-33.

Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 1994; 356: 295-8.

Brown GC. Nitric oxide and mitochondrial respiration. Biochim Biophys Acta 1999; 1411: 351-69. Review.

Brown GC, Borutaite V. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 2004; 1658: 44-9. Review.

Brown GC, Borutaite V. Nitric oxide and mitochondrial respiration in the heart. Cardiovasc Res. 2007; 75: 283-90. Review.

Brown KK, Eriksson SE, Arnér ESJ, Hampton MB. Mitochondrial peroxiredoxin 3 is rapidly oxidized in cells treated with isothiocyanates. Free Radic Biol Med. 2008; 45: 494-502.

Budinger GRS, Duranteau J, Chandel N S, Schumacker PT. Hibernation during hypoxia in cardiomyocytes. Role of mitochondria as the O2 sensor. J Biol Chem. 1998; 273: 3320-6.

Bustamante J, Bersier G, Romero M, Badin RA, Boveris A. Nitric oxide production and mitochondrial dysfunction during rat thymocyte apoptosis. Arch Biochem. 2000; 376: 239-47.

Cadenas E, Boveris A, Ragan CI, Stoppani AO. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys. 1977; 180(2): 248-57.

Cadenas E, Davies KJA. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000; 29: 222–30.

Cain K. Chemical-induced apoptosis: formation of the Apaf-1 apoptosome. Drug Metabolism Reviews 2003; 35: 337-63.

Cancherini DV, Queliconi BB, Kowaltowski AJ. Pharmacological and physiological stimuli do not promote Ca2+-sensitive K+ channel activity in isolated heart mitochondria. Cardiovasc Res. 2007; 73(4): 720-8.

Capaldi RA. Structure and assembly of cytochrome c oxidase. Arch Biochem Biophys. 1990; 280: 252-62. Review.

Caro AA, Cederbaum AI, Stoyanovsky DA. Oxidation of the ketoxime acetoxime to nitric oxidde by oxygen radical-generating systems. Nitric Oxide 2001; 5: 413-24.

Carreras MC, Franco MC, Peralta JG, Poderoso JJ. Nitric oxide, complex I, and the modulation of mitochondrial reactive species in biology and disease. Molecular Aspects Med. 2004; 25: 125-39. Review.

Carreras MC, Poderoso JJ. Mitochondrial nitric oxide in the signaling of cell integrated responses. Am J Physiol Cell Physiol. 2007; 292: C1569-80.

Carroll J, Fearnley IM, Skehel JM, Runswick MJ, Shannon RJ, Hirst J, Walker JE. The post-translational modifications of the nuclear encoded subunits of complex I from bovine heart mitochondria. Mol Cell Proteomics 2005; 4: 693-9.

Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE. Bovine complex I is a complex of 45 different subunits. J Biol Chem. 2006; 281: 32724-7.

Cecchini G. Function and structure of complex II of the respiratory chain. Ann Rev Biochem. 2003; 72: 77-109.

Cenas N, Nivinskas H, Anusevicius Z, Sarlauskas J, Lederer F, Arner ESJ. Interactions of quinones with thioredoxin reductase: a challenge to the antioxidant role of the mammalian selenoprotein. J Biol. Chem. 2004; 279: 2583-92.

Chacinska A, Koehler CM, Milenkovic D, LithgowT, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell 2009; 138: 628-44.

Chae HZ, Kim HJ, Kang SW, Rhee SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract. 1999; 45: 101-12.

Chalah A, Khosravi-Far R. The mitochondrial death pathway. In : Khosravi-Far R, White E eds Programmed cell death in cancer progression and therapy. Springer 2008, ch 3, pp 25-45.

Chance B, Williams GR. Holmes WF, Higgins INS. Respiratory enzymes in oxidative phosphorylation : V. A mechanism for oxidative phosphorylation. J Biol Chem. 1955; 217: 439-52.

Chance B, Oshino N. Kinetics and mechanisms of catalasein peroxisomes of the mitochondrial fraction. Biochem J. 1971; 122: 225-33.

Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979; 59: 527-605.

Chandel NS, Budinger GRS, Schumacker PT. Molecular oxygen modulates cytochrome c oxidase function. J Biol Chem. 1996; 271: 18672-7.

Chandel NS, Budinger GRS, Choe SH, Schumacker PT. Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J Biol Chem. 1997; 272(30): 18808-16.

Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000; 275(33): 25130-8.

Chandel NS, Schumacker PT. Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol. 2000; 88(5): 1880-9.

Chandel NS, Budinger GRS. The cellular basis for diverse responses to oxygen. Free Radic Biol Med. 2007; 42: 165–74.

Chang TS, Cho CS, Park S, Yu S, Kang SW, Rhee SG. Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J Biol Chem. 2004; 279: 41975-84.

Chen Q, Hoppel CL, Lesnefsky EJ. Electron transport before cardiac ischemia with the reversible inhibitor amobarbital protects rat heart mitochondria. J Pharmacol Exp Ther. 2006a; 316: 200–7.

Chen Y, Cai J, Murphy TJ, Jones DP. Overexpressed human mitochondrial thioredoxin confers resistance to oxidant-induced apoptosis in human osteosarcoma cells. J Biol Chem. 2002; 277: 33242-8.

Chrestensen CA, Starke DW, Mieyal JJ. Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem. 2000; 275(34): 26556-65.

Churbanova IY, Sevrioukova IF. Redox-dependent changes in molecular properties of mitochondrial apoptosis-inducing factor. J Biol Chem. 2008; 283(9): 5622-31.

Clarke R, Armitage J. Antioxidant vitamins and risk of cardiovascular disease. Review of large-scale randomised trials. Cardiovasc Drugs Ther. 2002; 16: 411-5.

Cleeter MWJ, Coopefib JM, Darley-Usmard VM, Moncada S, Schapira AHV. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 1994; 345: 50-4.

Clementi E, Brown GC, Feelisch M, Moncada S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA. 1998; 95: 7631-6.

Cooper CE. Nitric oxide and cytochrome oxidase substrate, inhibitor or effector ? Trends Biochem Sci. 2002; 27: 33-9.

Cooper CE, Davies NA, Psychoulis M, Canevari L, Bates TE, Dobbie MS, Casley CS, Sharpe MA. Nitric oxide and peroxynitrite cause irreversible increases in the Km for oxygen of mitochondrial cytochrome oxidase : in vitro and in vivo studies. Biochim Biophys Acta 2003; 1607: 27-34.

Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res. 2005; 97(4): 329-36.

Crompton M, Costi A. Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur J Biochem. 1988; 178: 489-501.

Crompton M, Ellinger H, Costi A. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J. 1988; 255: 357-60.

Crompton M, Virji S, Ward JM. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem. 1998; 258: 729-35.

Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999; 341: 233-49.

Dagsgaard C, Taylor LE, O'Brien KM, Poyton RO. Effects of anoxia and the mitochondrion on expression of aerobic nuclear COX genes in yeast: evidence for a signaling pathway from the mitochondrial genome to the nucleus. J Biol Chem. 2001; 276(10): 7593-601.

Dahm CC, Moore K, Murphy MP. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite. Implications for the interaction of nitric oxide with mitochondria. J Biol Chem. 2006; 281: 10056-65.

Dahout-Gonzalez C, Nury H, Trézéguet V, Lauquin GJM, Pebay-Peyroula E, Brandolin G. Molecular, functional, and pathological aspects of the mitochondrial ADP/ATP carrier. Physiology 2006; 21: 242-9.

Damdimopoulos AE, Miranda-Vizuete A, Pelto-Huikko M, Gustafsson A, Spyrou G. Human mitochondrial thioredoxin: involvement in mitochondrial membrane potential and cell death. J Biol Chem. 2002; 277: 33249-57.

Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N, Kroemer G. Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett. 2000; 476(3): 118-23.

Davidson SM, Yellon DM. The role of nitric oxide in mitochondria. Focus on "Modulation of mitochondrial Ca2+ by nitric oxide in cultured bovine vascular endothelial cells". Am J Physiol Cell Physiol. 2005; 289(4): C775-7.

Dawson TL, Gores GJ, Nieminen AL, Herman B, Lemasters JJ. Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes. Am J Physiol. 1993; 264(4 Pt 1): C961-7.

Deby C, Deby-Dupont G. Intervention du peroxyde d’hydrogène dans la biosynthèse des prostanoïdes. Recherches in vitro. Bull Cl Sci Acad Roy Belg. 1979; 65: 99-107.

Dedkova EN, Ji X, Lipsius SL, Blatter LA. Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cells. Am J Physiol Cell Physiol. 2004; 286(2): C406-15.

Dedkova EN, Blatter LA. Modulation of mitochondrial Ca2+ by nitric oxide in cultured bovine vascular endothelial cells. Am J Physiol Cell Physiol. 2005; 289(4): C836-45.

de Grey AD. The reductive hotspot hypothesis of mammalian aging: membrane metabolism magnifies mutant mitochondrial mischief. Eur J Biochem. 2002; 269(8): 2003-9. Review.

Delettre C, Yuste VJ, Moubarak RS, Bras M, Lesbordes-Brion JC, Petres S, Bellalou J, Susin SA. AIFsh, a novel apoptosis-inducing factor (AIF) pro-apoptotic isoform with potential pathological relevance in human cancer. J Biol Chem. 2006; 281(10): 6413-27.

Devaraj S, Tang R, Adams-Huet B, Harris A, Seenivasan T, de Lemos JA, Jialal I. Effect of high-dose alpha-tocopherol supplementation on biomarkers of oxidative stress and inflammation and carotid atherosclerosis in patients with coronary artery disease. Am. J. Clin. Nutr. 2007; 86: 1392-8.

Dirmeier R, O'Brien KM, Engle M, Dodd A, Spears E, Poyton RO. Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes. J Biol Chem. 2002; 277(38): 34773-84.

Drahota Z, Chowdhury SKR, Floryk D, Mracek T, Wilhelm J, Rauchova H, Lenaz G, Houstek J. Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. J Bioenerg Biomembranes 2002; 34; 105-13.

Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002; 82(1): 47-95. Review.

Duchen MR. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol. 1999; 516 (Pt 1): 1-17.

Duchen MR. Mitochondria and calcium: from cell signalling to cell death. J Physiol. 2000; 529 Pt 1: 57-68. Review.

Dumas JF, Argaud L, Cottet-Rousselle C, Vial G, Gonzalez C, Detaille D, Leverve X, Fontaine E. Effect of transient and permanent permeability transition pore opening on NAD(P)H localization in intact cells. J Biol Chem. 2009; 284(22): 15117-25.

Dumont A, Hehner SP, Hofmann TG, Ueffing M, Dröge W, Schmitz ML. Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-κB. Oncogene 1999; 18: 747-57.

Duyckaerts C, Sluse-Goffart CM, Fux JP, Sluse FE, Liebecq C. Kinetic mechanism of the exchanges catalysed by the adenine-nucleotide carrier. Eur J Biochem. 1980; 106(1): 1-6.

Eble KS, Coleman WB, Hantgan RR, Cunningham C. Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J Biol Chem. 1990 ; 265 : 19434-40.

Echtay KS. Mitochondrial uncoupling proteins—What is their physiological role? Free Radic Biol Med. 2007; 43: 1351-71. Review.

Ejima K, Koji T, Nanri H, Kashimura M, Ikeda M. Expression of thioredoxin and thioredoxin reductase in placentae of pregnant mice exposed to lipopolysaccharide. Placenta 1999a; 20: 561-6.

Ejima K, Nanri H, Toki N, Kashimura M, Ikeda M. Localization of thioredoxin reductase and thioredoxin in normal human placenta and their protective effect against oxidative stress. Placenta 1999b; 20: 95-101.

Elfering SL, Sarkela TM, Giulivi C. Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem. 2002; 277(41): 38079-86.

Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35(4): 495-516.

Epperly MW, Gretton JE, Sikora CA, Jefferson M, Bernarding M, Nie S, Greenberger JS. Mitochondrial localization of superoxide dismutase is required for decreasing radiation-induced cellular damage. Radiat Res. 2003; 160: 568-78.

Epperly MW, Dixon T, Wang H, Schlesselman J, Franicola D, Greenberger JS. Modulation of radiation-induced life shortening by systemic intravenous MnSOD-plasmid liposome gene therapy. Radiat Res. 2008; 170: 437-43.

Escames G, León J, Macías M, Khaldy H, Acuña-Castroviejo D. Melatonin counteracts lipopolysaccharide-induced expression and activity of mitochondrial nitric oxide synthase in rats. FASEB J. 2003; 17: 932-4.

Falcke M, Hudson JL, Camacho P, Lechleiter JD. Impact of mitochondrial Ca2+ cycling on pattern formation and stability. Biophys J. 1999; 77: 37-44.

Fang J, Lu J, Holmgren A. Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J Biol Chem. 2005; 280: 25284-90.

Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S. Role of mitochondria in toxic oxidative stress. Mol Interv. 2005; 5: 94-111. Review.

Fernandez MG, Troiano L, Moretti L, Nasi M, Pinti M, Salvioli S, Dobrucki J, Cossarizza A. Early changes in intramitochondrial cardiolipin distribution during apoptosis. Cell Growth  Differentiation 2002; 13: 449-55.

Fernandez-Checa JC. Redox regulation and signaling lipids in mitochondrial apoptosis. Biochem Biophys Res Commun. 2003; 304: 471-9. 

Fernández-Vizarra E, Tiranti V, Zevian M. Assembly of the oxidative phosphorylation system in humans: What we have learned by studying its defects. Biochim Biophys Acta 2009; 1793: 200-11. Review.

Fernando MR, Lechner JM, Lofgren S, Gladyshev VN, Lou MF. Mitochondrial thioltransferase (glutaredoxin 2) has GSH-dependent and thioredoxin reductase-dependent peroxidase activities in vitro and in lens epithelial cells. FASEB J. 2006; 20(14): 2645-7.

Fleury C, Mignotte B, Vayssière JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 2002; 84(2-3): 131-41.

Flohé L, Schlegel W. [Glutathione peroxidase. IV. Intracellular distribution of the glutathione peroxidase system in the rat liver]. Hoppe Seylers Z Physiol Chem. 1971; 352(10): 1401-10. En Allemand.

Fontaine E, Eriksson O, Ichas F, Bernardi P. Regulation of the permeability transition pore in skeletal muscle mitochondria — modulation by electron flow through the respiratory chain complex. J Biol Chem. 1998; 273: 12662-8.0

Forman HJ, Kennedy J. Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase. Arch Biochem Biophys. 1976; 173(1): 219-24.

Fridovich I. Superoxide Anion Radical (O2), superoxide dismutases, and related matters. J Biol Chem. 1997; 272: 18515-7. Review.

Friedman JS, Rebel VI, Derby R, Bell K, Huang T-T, Kuypers FA, Epstein CJ, Burakoff SJ.  Absence of mitochondrial superoxide dismutase results in a murine hemolytic anemia responsive to therapy with a catalytic antioxidant. J Exp Med. 2001; 193: 925-34.

Galkin A, Moncada S. S-Nitrosation of mitochondrial complex I depends on its structural conformation. J Biol Chem. 2007; 282: 37448-53.

Gallogly MM, Mieyal JJ. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Op Pharmacol. 2007; 7, 381-91

Gao S, Chen J, Brodsky SV, Huang H, Adler S, Lee JH, Dhadwal N, Cohen-Gould L, Gross S S, Goligorsky MS. Docking of endothelial nitric oxide synthase (eNOS) to the mitochondrial outer membrane. A pentabasic amino acid sequence in the autoinhibitory domain of eNOS targets a proteinase K-cleavable peptide on the cytoplasmic face of mitochondria. J Biol Chem. 2004; 279: 15968-74.

Garcia-Ruiz C, Morales A, Ballesta A, Rodes J, Kaplowitz N, Fernandez-Checa JC. Effect of chronic ethanol feeding on glutathione and functional integrity mitochondria in periportal and perivenous rat hepatocytes. J Clin Invest. 1994; 94: 193-201.

Garlid KD, Beavis AD. Evidence for the existence of an inner membrane anion channel in mitochondria. Biochem Biophys Acta 1986; 853(3-4): 187-204.

Garlid KD, Paucek P, Yarov-Yarovoy V, Sun X, Schindler PA. The mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem. 1996; 271: 8796-9.

Genova M L, Ventura B, Giuliano G, Bovina C, Formiggini G, Parenti Castelli G, Lenaz G. The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett. 2001; 505: 364-8.

Genova ML, Merlo Pich M, Biondi A, Bernacchia AA, Falasca A, Bovina C, Formiggini G, Parenti Castelli G, Lenaz G. Mitochondrial production of oxygen radical species and the role of coenzyme Q as an antioxidant. Exp Biol Med. 2003; 228: 506-13.

Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett. 1997; 418: 291-6.

Ghafourifar P, Schenk U, Klein S D, Richter C. Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J Biol Chem. 1999; 274: 31185-8.

Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem. 1998; 273: 11038-43.

Gladyshev VN, Jieang K-T, Wootton JC, Hatfield DL. A new human selenium-containing protein. J Biol Chem. 1996; 273: 8910-5.

Gladyshev VN, Liu A, Novoselov SV, Krysan K, Sun QA, Kryudov VM, Kryukov GV, Lou MF. Identification and characterization of a new mammalian glutaredoxin (thioltransferase), Grx2. J Biol Chem. 2001; 276: 30374-80.

Gnaiger E. Oxygen conformation of cellular respiration. A perspective of mitochondrial physiology. In: RC Roach, PD Wagner, PH Hacket, eds, Hypoxia: though the life cycle. Kluwer Academics/Plenum publish., New York, 2003, pp. 1-16.

Goldsteins G, Keksa-Goldsteine V, Ahtoniemi T, Jaronen M, Arens E, Akerman K, Chan PH, Koistinaho J. Deleterious role of superoxide dismutase in the mitochondrial intermembrane space. J Biol Chem. 2008; 283(13): 8446-52.

Gomez B Jr, Robinson NC. Phospholipase digestion of bound cardiolipin reversibly inactivates bovine cytochrome bc1. Biochemistry 1999; 38: 9031-8.

Green DE, Bachmann E, Allmann DW, Perdue JF. The membrane systems of the mitochondrion. III. The isolation and properties of the outer membrane of beef heart mitochondria. Arch Biochem Biophys. 1966; 115: 172-80.

Green DR, Kroemer G. The central executioners of apoptosis ; caspases or mitochondria. Trends Cell Biol. 1998; 8: 267-71.

Green DR. Apoptotic pathways: paper wraps stone blunts scissors. Cell 2000; 102(1): 1-4.

Green DR, Evan GI. A matter of life and death. Cancer Cell 2002; 1: 19-30. Review.

Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004; 305: 626-9.

Gromer S, Johansson L, Bauer H, Arscott LD, Rauch S, Ballou DP, Williams CH Jr, Schirmer RH, Arner ESJ. Active sites of thioredoxin reductases: Why selenoproteins? Proc Natl Acad Sci USA. 2003; 100(22): 12618-23.

Guarnieri C. Advances in Myocardiology. Plenum Publishing, 1985, vol. 5, pp. 191-9.

Guarnieri C, Muscari C, Caldarera CM. In : Free Radicals and Aging. I Emerit, B Chance, Eds, Birkhäuser Verlag, Basel, Switzerland, 1992, pp. 73-77.

Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990; 258: C755-86.

Gunter TE, Gunter KK, Sheu SS, Gavin CE. Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol. 1994; 267(2 Pt 1): C313-39. Review.

Gus'kova RA, Ivanov II, Kol'tover VK, Akhobadze VV, Rubin AB. Permeability of bilayer lipid membranes for superoxide (O2) radicals. Biochim Biophys Acta 1984; 778: 579-85.

Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex: another view. Biochimie 2002; 84: 153-66.

Halestrap AP, Brenner C. The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem. 2003; 10(16): 1507-25. Review.

Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion — a target for cardioprotection. Cardiovasc Res. 2004; 61: 372–85.

Halestrap AP. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans. 2006; 34: 232-7.

Han D, Williams E, Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J. 2001; 353: 411-6.

Han D, Antunes F, Canali R, Rettori D, Cadenas E. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem. 2003; 278: 5557-63.

Hand SC, Menze MA. Mitochondria in energy-limited states: mechanisms that blunt the signaling of cell death. J Exp Biol. 2008; 211(Pt 12): 1829-40. Review.

Hansson MJ, Mansson R, Mattiasson G, Ohlsson J, Karlsson J, Keep MF, Elmer E. Brain-derived respiring mitochondria exhibit homogeneous, complete and cyclosporine-sensitive permeability transition. J Neurochem. 2004; 89: 715-29.

Hashemy SI, Johansson C, Berndt C, Lillig CH, Holmgren A. Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity. J Biol Chem. 2007; 282(19): 14428-36.

Hatch GM. Cardiolipin: biosynthesis, remodeling and trafficking in the heart and mammalian cells. Int J Mol Med. 1998; 1: 33-41. Review

Hauptmann N, Grimsby J, Shih JC, Cadenas E. The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Arch Biophys Biochem. 1996; 335: 295-304.

Hausenloy D, Wynne A, Duchen M, Yellon D. Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 2004; 109: 1714-7.

Hawkins BJ, Madesh M, Kirkpatrick CJ, Fisher AB. Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling. Molec Biol Cell. 2007; 18: 2002-12.

Haworth RA, Hunter DR. The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys. 1979; 195: 460-7.

Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005; 45: 51-88.

Haynes V, Elfering S, Traaseth N, Giulivi C. Mitochondrial nitric-oxide synthase: Enzyme expression, characterization, and regulation. J Bioenerg Biomembr. 2004; 36: 341-6.

He L, Lemasters JJ. Regulated and unregulated mitochondrial permeability transition pores : a new paradigm of pore structure and function ? FEBS Lett. 2002; 512(1-3):1-7.

He M, Cai J, Go YM, Johnson JM, Martin WD, Hansen JM, Jones DP. Identification of thioredoxin-2 as a regulator of the mitochondrial permeability transition. Toxicol Sci. 2008; 105: 44-50.

Henderson PJ, Lardy HA. Bongkrekic acid. An inhibitor of the adenine nucleotide translocase of mitochondria. J Biol Chem. 1970; 245: 1319-26.

Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR, Belanger C, LaMotte F, Gaziano JM, Ridker PM, Willett W, Peto R. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med. 1996;  334: 1145-9.

Hennet T, Richter C, Peterhans E. Tumour necrosis factor-alpha induces superoxide anion in mitochondria of L929 cells. Biochem J. 1993; 289: 587-92.

Hodge T, Colombini M. Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol. 1997; 157(3): 271-9.

Hoek JB, Rydström J. Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem J. 1988; 254(1): 1-10. Review.

Holmgren A. Hydrogen donor system for Escherichia coli ribonucleoside diphosphate reductase dependent upon glutathione (DNA synthesis/thioredoxin). Proc Natl Acad Sci USA 1976; 73: 2275-9.

Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A. Mitochondrial ATP-sensitive channels modulate cardiac mitochondrial functions. Am J Physiol. 1998; 44: H1567-76

Horiguchi H, Yurimoto H, Kato N, Sakai Y. Antioxidant system within yeast peroxisome: Biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candida boidinii. J Biol Chem. 2001; 276: 14279-88.

Houtkooper RH, Vaz FM. Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci. 2008; 65(16): 2493-506.

Hoye AT, Davoren JE, Wipf P, Fink MP, Kagan VE. Targeting mitochondria. Acc Chem Res. 2008; 41(1): 87-97.

Huang RP, Wu JX, Fan Y, Adamson ED. UV activates growth factor receptors via reactive oxygen species. J Cell Biol. 1996; 133: 211-20.

Hurd TR, Requejo R, Filipovska A, Brown S, Prime TA, Robinson AJ, Fearnley IM, Murphy MP. Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: Potential role of CYS residues in decreasing oxidative damage. J Biol Chem. 2008; 283(36): 24801-15.

Huser J, Blatter LA. Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. Biochem J. 1999; 343: 311-7.

Hüttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr. 2008; 40: 445-56.

Ichas F, Jouaville LS, Mazat JP. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 1997; 89: 1145-53.

Ichas F, Mazat JP. From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to highconductance state. Biochim Biophys Acta 1998; 1366: 33-50.

Ignarro LJ. Nitric oxide: biology and pathobiology. Academic Press, 2000, p.73.

Imberti R, Nieminen AL, Herman B, Lemasters JJ. Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butylhydroperoxide: protection by fructose, cyclosporin A and trifluoperazine. J Pharmacol Exp Ther. 1993; 265: 392-400.

Inagaki N, Gonoi T, Clement JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 1995; 270: 1166-70.

Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y, Imada I, Utsumi K. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem. 2003; 10(23): 2495-505. Review.

Isaeva EV, Shkryl VM, Shirokova N. Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle. J Physiol. 2005; 565: 855-72.

Iverson SL, Orrenius S. The cardiolipin-cytochrome c interaction and the mitochondrial regulation of apoptosis. Arch Biochem Biophys. 2004; 423(1): 37-46.

Jackson JB. Proton translocation by transhydrogenase. Minireview. FEBS Lett. 2003; 545: 18-24.

James AM, Cocheme HM, Smith RAJ, Murphy MP. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. J Biol Chem. 2005; 280: 21295-312.

Jekabsone A, Ivanoviene L, Brown GC, Borutaite V. Nitric oxide and calcium together inactivate mitochondrial complex I and induce cytochrome c release. J Mol Cell Cardiol. 2003; 35(7): 803-9.

Jeong SY, Seol DW. The role of mitochondria in apoptosis. BMB Reports. 2008; 41(1): 11-22.

Jezek P, Borecky J. Inner membrane anion channel and dicarboxylate carrier in brown adipose tissue mitochondria. Intern J Biochem Cell Biol. 1996; 28: 659-66.

Jezek P, Garlid KD. Mammalian mitochondrial uncoupling proteins. Intern J Biochem Cell Biol. 1998; 30: 1163-8.

Jezek P, Hlavata L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Intern J Biochem Cell Biol. 2005; 37: 2478-503. Review.

Jiang J, Serinkan BF, Tyurina YY, Borisenko GG, Mi Z, Robbins PD, Schroit AJ, Kagan VE. Peroxidation and externalization of phosphatidylserine associated with release of cytochrome c from mitochondria. Free Radic Biol Med. 2003; 35(7): 814-25.

Johansson C, Lillig CH, Holmgren A. Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J Biol Chem. 2004; 279(9): 7537-43.

Johansson CK, Kavanagh L, Gileadi O, Oppermann U. Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria. J Biol Chem. 2007; 282(5): 3077-82.

Jones MS, Jones OT. The structural organization of haem synthesis in rat liver mitochondria. Biochem J. 1969; 113(3): 507-14.

Jones DP. Disruption of mitochondrial redox circuitry in oxidative stress. Chem Biol Interact. 2006; 163: 38-53.

Jung CH, Thomas JA. S-glutathiolated hepatocyte proteins and insulin disulfides as substrates for reduction by glutaredoxin, thioredoxin, protein disulfide isomerase, and glutathione. Arch Biochem Biophys. 1996; 335(1): 61-72.

Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang J, Potapovich AI, Kini V, Amoscato AA, Fujii Y. Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic Biol Med. 2004; 37(12): 1963-85.

Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol. 2005; 1(4): 223-32.

Kagan VE, Tyurina YY, Bayir H, Chu CT, Kapralov AA, Vlasova II, Belikova NA, Tyurin VA, Amoscato A, Epperly M, Greenberger J, Dekosky S, Shvedova AA, Jiang J. 2006. The "pro-apoptotic genies" get out of mitochondria: oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chem Biol Interact. 2006; 163(1-2): 15-28.

Kagan VE, Bayir A, Bayir H, Stoyanovsky D, Borisenko GG, Tyurina YY, Wipf P, Atkinson J, Greenberger JS, Chapkin RS, Belikova NA. Mitochondria-targeted disruptors and inhibitors of cytochrome c/cardiolipin peroxidase complexes : A new strategy in anti-apoptotic drug discovery. Mol Nutr Food Res. 2009a; 53: 104-14.

Kagan VE, Wipf P, Stoyanovsky D, Greenberger JS, Borisenko G, Belikova NA, Yanamala N, Samhan Arias AK, Tungekar MA, Jiang J, Tyurina YY, Ji J, Klein-Seetharaman J, Pitt BR, Shvedova AA, Bayir H. Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactions. Adv Drug Deliv Rev. 2009b; 61: 1375-85.

Kanai AJ, Pearce LL, Clemens PR, Birder LA, VanBibber MM, Choi SY, de Groat WC, Peterson J. Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci USA. 2001; 98: 14126-31.

Kang SW, Baines IC, Rhee SG. Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J Biol Chem. 1998a; 273(11): 6303-11.

Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem. 1998b; 273(11): 6297-302.

Kanner J, Harel S, Granit R, et al. Nitric oxide, an inhibitor of lipid oxidation by lipoxygenase, cyclooxygenase and hemoglobin. Lipids 1992; 27: 46-9.

Karp G, Bouharmont J, Wissocq J-C. Biologie cellulaire et moléculaire. De Boeck édit., 2004, pp.184-187.

Katoh S, Mitsuy Y, Kitani K, Suzuki T. Hyperoxia induces the neuronal differentiated phenotype of PC12 cells via a sustained activity of mitogen-activated protein kinase induced by Bcl-2 Biochem J. 1999; 338: 465-70.

Kim HE, Fang FDM, Wang X. Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent  nucleotide exchange on Apaf-1. Proc Natl Acad Sci USA 2005; 102: 17545-50.

Kinnula VL, Lehtonen S, Kaarteenaho-Wiik R, Lakari E, Pääkkö P, Kang SW, Rhee SG, Soini Y. Cell specific expression of peroxiredoxins in human lung and pulmonary sarcoidosis. Thorax 2002; 57: 157-64.

Knopp EA, Arndt TL, Eng KL, Caldwell M, Leboef RC, Deeb SS, O'Brien K.D. Murine phospholipids hydroperoxide glutathione peroxidase: cDNA sequence, tissue expression, and mapping. Mamm Genome 1999; 10: 601-5.

Koehler CM. New developments in mitochondrial assembly. Annu Rev Cell Dev Biol. 2004; 20: 309-35. Review.

Korge P, Honda HM, Weiss JN. Regulation of the mitochondrial permeability transition by matrix Ca2+ and voltage during anoxia/reoxygenation. Am J Physiol Cell Physiol. 2001; 280: C517-26.

Korshunov SS, Korkina OV, Ruuge EK, Skulachev VP, Starkov AA. Fatty acids as natural uncouplers preventing generation of Oc32 and H2O2 by mitochondria in the resting state. FEBS Lett. 1998; 435: 215-8.

Krauss G. Biochemistry of signal transduction and regulation, Wiley-VCH, 2000, p 458.

Kumar S, Dorstyn L. Analysing caspase activation and caspase activity in apoptotic cells. Methods Molec Biol. 2009; 559: 3-17.

Kushnareva Y, Murphy AN, Andreyev A. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation–reduction state. Biochem J. 2002; 368: 545-53.

Lacza Z, Puskar M, Figueroa J, Zhang J, Rajapakse N, Busua D. Mitochondrial nitric oxide synthase is constitutively active and is functionally upregulated in hypoxia. Free Radic Biol Med. 2001; 31: 1609-15.

Lee SR, Kim JR, Kwon KS, Yoon HW, Levine RL, Ginsburg A, Rhee SG. Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J Biol Chem. 1999; 274(8): 4722-34.

Lemasters JJ, Holmuhamedov E. Voltage-dependent anion channel (VDAC) as mitochondrial governator--thinking outside the box. Biochim Biophys Acta 2006; 1762(2): 181-90.

Leo S, Szabadkai G, Rizzuto R. The mitochondrial antioxidants MitoE(2) and MitoQ(10) increase mitochondrial Ca(2+) load upon cell stimulation by inhibiting Ca(2+) efflux from the organelle. Ann NY Acad Sci. 2008; 1147: 264-74.

Leppala JM, Virtamo J, Fogelholm R, Huttunen JK, Albanes D, Taylor PR, Heinonen OP. Controlled trial of alpha-tocopherol and beta-carotene supplements on stroke incidence and mortality in male smokers. Arterioscler Thromb Vasc Biol. 2000; 20: 230-5.

Lesnefsky EJ, Hoppel CL. Ischemia-reperfusion injury in the aged heart: role of mitochondria. Arch Biochem Biophys. 2003; 420(2): 287-97. Review.

Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995; 11: 376-81.

Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479-89.

Liang HW, Xia Q, Bruce IC. Reactive oxygen species mediate the neuroprotection conferred by a mitochondrial ATP-sensitive potassium channel opener during ischemia in the rat hippocampal slice. Brain Res. 2005; 1042: 169-75.

Lillig CH, Berndt C, Vergnolle O, Lonn ME, Hudemann C, Bill E, Holmgren A. Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. Proc Natl Acad Sci USA 2005; 102(23): 8168-73.

Lim SY. Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc Res. 2007; 75: 530-5.

Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999; 79: 1431-568.

Liu G, Hinch B, Davatol-Hag H, Lu Y, Powers M, Beavis AD. Temperature dependence of the mitochondrial inner membrane anion channel. The relationship between temperature and inhibition by protons. J Biol Chem. 1996; 271(33): 19717-23.

Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptosis program in cell free extracts : requirement for dATP and cytochrome c. Cell 1996; 86: 147-57.

Liu X, Zou H, Widlak P, Garrard W, Wang X. Activation of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease). Oligomerization and direct interaction with histone H1. J Biol Chem. 1999; 274(20):13836-40.

Lodish H, Berk A, Matsudaira P, Kaiser CA, Darnell J, Krieger M, Scott MP. Biologie moléculaire de la cellule. Editions de Boeck, 2005, p. 307.

Lorenzo HK, Susin SA. Mitochondrial effectors in caspase-independent cell death. FEBS Lett. 2004; 557(1-3): 14-20. Review.

Löschen G, Flohé L, Chance B. Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett. 1971; 18: 261-4.

Löschen G, Azzi A, Flohe L. Mitochondrial H2O2 formation: Relationship with energy conservation. FEBS Lett. 1973; 33, 84–88.

Löschen G, Azzi A, Richter C, Flohé L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 1974; 42: 68-72.

Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (ΔΨm) in apoptosis; an update. Apoptosis 2003; 8: 115-28.

Lynch RE, Fridovich I. Permeation of the erythrocyte stroma by superoxide radical. J Biol Chem. 1978; 253: 4697-89.

McHugh P, Turina M. Apoptosis and necrosis: a review for surgeons. Surg Infect. 2006; 7(1): 53-68. Review.

Madesh M, Hajnóczky G. VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol. 2001; 155: 1003-15.

Mannella CA. Conformational changes in the mitochondrial channel protein, VDAC, and their functional implications. J Struct Biol. 1998; 121(2): 207-18. Review.

May JM, Cobb CE, Mendiratta S, Hill KE, Burk RF. Reduction of the ascorbyl free radical to ascorbate by thioredoxin reductase. J Biol Chem. 1998; 273(36): 23039-45.

May JM, Qu ZC, Cobb CE. Human erythrocyte recycling of ascorbic acid: relative contribution from the ascorbate free radical and dehydroascorbic acid. J Biol Chem. 2004; 279(15): 14975-82.

Meister A, Anderson ME. Glutathione. Ann Rev Biochem. 1983; 52: 711-60.

Meister A. Glutathione-ascorbic acid antioxidant system in animals. Minireview. J Biol Chem. 1994; 269: 9397-400.

Melov S. Mitochondrial oxidative stress physiologic consequences and potential for a role in aging. Ann NY Acad Sci. 2000; 219-25.

Merle P, Kadenbach B. Kinetic and structural differences between cytochrome c oxidases from beef liver and heart. Eur J Biochem. 1982; 125(1): 239-44.

Miklya I, Knoll B, Knoll J. A pharmacological analysis elucidating why, in contrast to (−)-deprenyl (selegiline), alpha-tocopherol was ineffective in the DATATOP study. Life Sci. 2003; 72: 2641-8.

Miller ER III, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005; 142: 37-46.

Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G, Penninger JM, Peleato ML, Kroemer G, Susin SA. NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem. 2001; 276(19): 16391-8.

Miranda-Vizuete A, Damdimopoulos AE, Spyrou G. The mitochondrial thioredoxin system. Antioxid Redox Signal. 2000; 2: 801-10.

Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 1961; 191: 144-8.

Mitchell JB, Russo A, Kuppusamy P, Krishna MC. Radiation, radicals, and images. Ann NY Acad Sci. 2000; 899: 28-43.

Moncada S, Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis. Nat Rev Mol Cell Biol. 2002; 3: 214-20. Review.

Moore MR. The biochemistry of heme synthesis in porphyria and in the porphyrinurias. Clin Dermatol. 1998; 16(2): 203-23.

Moret V, Lorini M, Fotia A, Siliprandi N. Effect of atractyloside on the binding of adenine nucleotides to the mitochondrial “structural protein”. Biochim Biophys Acta 1966; 124: 433-5.

Moriarty-Craige SE, Jones DP. Extracellular thiols and thiol/disulfide redox in metabolism. Annu Rev Nutr. 2004; 24: 481-509.

Muller FL, Roberts AG, Bowman MK, Kramer DM. Architecture of the Qo site of the cytochrome bc1 complex probed by superoxide production. Biochemistry 2003; 42(21): 6493-9.

Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004; 279: 49064-73.

Murata M, Akao M, O'Rourke B, Marbán E. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res. 2001; 89(10): 891-8.

Muro C, Grigoriev SM, Pietkiewicz D, Kinnally KW, Campo ML. Comparison of the TIM and TOM channel activities of the mitochondrial protein import complexes. Biophys J. 2003; 84(5): 2981-9.

Murphy MP. How understanding the control of energy metabolism can help investigation of mitochondrial dysfunction, regulation and pharmacology. Biochim Biophys Acta 2001; 1504(1): 1-11.

Murphy MP, Echtay KS, Blaikie FH, Asin-Cayuela J, Cocheme HM, Green K, Buckingham JA,. Taylor ER, Hurrell F, Hughes G, Miwa S, Cooper CE, Svistunenko DA, Smith RAJ, Brand MD. Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation. Studies using a mitochondria-targeted spin trap derived from phenyl-N-tert- butylnitrone. J Biol Chem. 2003; 278: 48534-45.

Murphy MP, Smith RAJ. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007; 47: 629-56. Review.

Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol. 1997; 15: 351-69.

Napier I, Ponka P, Richardson DR. Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood 2005; 105(5): 1867-74.

Nègre-Salvayre A, Hirtz C, Carrera G, Cazenave R, Troly M, Salvayre R, Pénicaud L, Casteilla LA. Role for uncoupling protein-2 as a regulator of mitochondria hydrogen peroxide generation. FASEB J.1997; 11: 809-15.

Nemoto S, Takeda K, Yu ZX, Ferrans VJ, Finkel T. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol. 2000; 20(19): 7311-8.

Nemoto S, Finkel T. Redox regulation of Forkhead proteins through a p66shc-dependent signaling pathway. Science 2002; 295 : 2540-52.

Neupert W, Herrmann JM. Translocation of proteins into mitochondria. Annu Rev Biochem. 2007; 76: 723-49. Review.

Niknahad H, Khan S, O'Brien PJ. Hepatocyte injury resulting from the inhibition of mitochondrial respiration at low oxygen concentrations involves reductive stress and oxygen activation. Chem Biol Interact. 1995; 98(1): 27-44.

Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000 ; 404: 787-90.

Noble DR, Swift HR, Lyn HW. Nitric oxide release from S-nitrosoglutathione (GSNO). Chem Commun. 1999; 2317-18.

Nonn L, Berggren M, Powis G. Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis. Mol Cancer Res. 2003; 1: 682-9.

Nordberg J, Arner ESJ. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001; 31: 1287-312.

Oberhammer F, Fritsch G, Schmied M, Pavelka M, Printz D, Purchio T, Lassmann H, Schulte-Hermann R. Condensation of the chromatin at the membrane of an apoptotic nucleus is not associated with activation of an endonuclease. J Cell Sci. 1993; 104: 317-26.

Oberley TD, Coursin DB, Cihla HP, Oberley LW, El-Sayyad N, Ho Y-S. Immunolocalization of manganese superoxide dismutase in normal and transgenic mice expressing the human enzyme. Histochem J. 2004; 25: 267-79.

Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver Cu,Zn-SOD in mitochondria. J Biol Chem. 2001; 276: 38388-93.

Oldenburg O, Qin Q, Krieg T, Yang XM, Philipp S, Critz SD, Cohen MV, Downey JM. Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am J Physiol Heart Circ Physiol. 2004;286: H468-76.

Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med. 1996; 334: 1150-5.

O’Rourke B, Cortassa S, Aon MA. Mitochondrial ion channels: gatekeepers of life and death. Physiology 2005; 20: 303-15. Review.

Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003; 4: 552-65.

Orrenius S. Reactive oxygen species in mitochondria-mediated death. Drug Metab Rev. 2007; 39: 443-55.

Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol. 2007; 47: 143-83.

Oshino N, Chance B. Properties of glutathione release observed during reduction of organic hydroperoxide, demethylation of aminopyrine and oxidation of some substances in perfused rat liver, and their implications for the physiological function of catalase. Biochem J. 1977; 162(3): 509-25.

Ostrander DB, Sparagna GC, Amoscato AA, McMillin JB, Dowhan W. Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis. J Biol Chem. 2001; 276(41): 38061-7.

Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA. 2002; 99(3): 1259-63.

Ozawa T. Mechanism of somatic mitochondrial DNA mutations associated with age and diseases. Biochim Biophys Acta 1995; 1271: 177-89.

Ozawa T. Mitochondrial genome mutations in cell death and aging. J Bioenerg Biomembr. 1999; 31: 377-90. Review.

Packer MA, Murphy MP. Peroxynitrite causes calcium efflux from mitochondria which is prevented by Cyclosporin A. FEBS Lett. 1994; 345: 237-40.

Padjett CM, Whorton AR. Glutathione redox cycle regulates nitric oxide-mediated glyceraldehyde 3-phosphate deshydrogenase inhibition. Am J Physiol Cell Physiol. 1997; 272: C99-108.

Palacios-Callender M, Quintero M, Hollis VS, Springett RJ, Moncada S. Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase. Proc Natl Acad Sci USA 2004;101: 7630-5.

Palacios-Callender M, Hollis V, Mitchison M, Frakich N, Unitt D, Moncada S. Cytochrome c oxidase regulates endogenous nitric oxide availability in respiring cells : a possible explanation for hypoxic vasodilation. Proc Natl Acad Sci USA 2007; 104: 18508-13.

Paradies G, Petrosillo G, Pistolese M, Ruggiero FM. The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles. FEBS Lett. 2000; 466(2-3): 323-6.

Pastorino JG, Snyder JW, Hoek JB, Farber JL. Ca2+ depletion prevents anoxic death of hepatocytes by inhibiting mitochondrial permeability transition. Am J Physiol. 1995; 268: C676-85.

Paucek P, Mironova G, Mahdi F, Beavis AD, Woldegiorgis G, Garlid KD. Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J Biol Chem. 1992; 267: 26062-9.

Pearce LL, Pitt BR, Peterson J. The peroxynitrite reductase activity of cytochrome c oxidase involves a two-electron redox reaction at the heme a3-CuB site. J Biol Chem. 1999; 274: 35763-7.

Pecqueur C, Alves-Guerra MC, Gelly C, Levi-Meyrueis C, Couplan E, Collins S, Ricquier D, Bouillaud F, Miroux D. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J Biol Chem. 2001; 276(12): 8705-12.

Petit PX, Goubern M, Diolez P, Susin SA, Zamzami N, Kroemer G. Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. FEBS Lett. 1998; 426: 111-6.

Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys. 1996; 328: 85-92.

Poderoso JJ, Lisdero C, Schopfer F, Riobo N, Carreras MC, Cadenas E, Boveris A. The regulation of mitochondrial oxygen uptake by redox reactions involving nitric oxide and ubiquinol. J Biol Chem. 1999; 274: 37709-16.

Pollard TD, Earnshaw WC. Biologie cellulaire, Elsevier, 2004, pp 321-4.

Polster BM, Basañez G, Etxebarria A, Hardwick JM, Nicholls DG. Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem. 2005; 280(8): 6447-54.

Powers MF, Smith LL, Beavis AD. On the relationship between the mitochondrial inner membrane anion channel and the adenine nucleotide translocase. J Biol Chem. 1994; 269(14): 10614-20.

Prabu SK, Anandatheerthavarada HK, Raza H, Srinivasan S, Spear JF, Avadhani NG. Protein kinase A-mediated phosphorylation modulates cytochrome c oxidase function and augments hypoxia and myocardial ischemia-related injury. J Biol Chem. 2006; 281: 2061-70.

Pratico D. Evidence of oxidative stress in Alzheimer's disease brain and antioxidant therapy: lights and shadows. Ann N Y Acad Sci. 2008; 1147: 70-8.

Qiu XZ, Yu L, Lai GH, Wang LY, Chen B, Ouyang J. Mitochondrial AIF protein involved in skeletal muscle regeneration. Cell Biochem Funct. 2008; 26: 598-602.

Quinlan CL, Costa AD, Costa CL, Pierre SV, Dos Santos P, Garlid KD. Conditioning the heart induces formation of signalosomes that interact with mitochondria to open mitoKATP channels. Am J Physiol Heart Circ Physiol. 2008; 295: H953-61.

Qutub AA, Popel AS. Reactive oxygen species regulate hypoxia-inducible factor 1α differentially in cancer and ischemia. Mol Cell Biol. 2008; 28(16): 5106-19.

Radi R, Turrens JF, Chang LY, Bush KM, Crapoll JD, Freeman BA. Detection of catalase in rat heart mitochondria. J Biol Chem. 1991; 266: 22028-34.

Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing.TIBS 2000; 25: 502-8.

Raza H, Robin MA, Fang JK, Avadhani NG. Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem J. 2002; 366: 44-55.

Rhee S, Chae H, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med. 2005; 38(12): 1543-52.

Ricquier D, Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J. 2000; 345: 161-79.

Riobo NA, Melani M, Sanjua N, Fiszman ML, Gravielle MC, Carreras MC, Cadenas E, Poderoso JJ. The modulation of mitochondrial nitric-oxide synthase activity in rat brain development. J Biol Chem. 2002; 277: 42447-55.

Rivas-Carrillo JD, Soto-Gutierrez A, Navarro-Alvarez N, Noguchi H, Okitsu T, Chen Y, Yuasa T, Tanaka K, Narushima M, Miki A, Misawa H, Tabata Y, Jun HS, Matsumoto S, Fox IJ, Tanaka N, Kobayashi N. Cell-permeable pentapeptide V5 inhibits apoptosis and enhances insulin secretion, allowing experimental single-donor islet transplantation in mice. Diabetes 2007; 56(5): 1259-67.

Rizzuto R, Duchen MR, Pozzan T. Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci STKE 2004; 215: re1.

Robinson NC, Zborowski J, Talbert LH. Cardiolipin-depleted bovine heart cytochrome c oxidase : binding stoichiometry and affinity for cardiolipin derivatives. Biochemistry 1990; 29(38): 8962-9.

Rydström J. Mitochondrial transhydrogenase--a key enzyme in insulin secretion and, potentially, diabetes. Trends Biochem Sci. 2006; 31(7): 355-8.

Saccone C, Pesole G, Sbisá E. The main regulatory region of mammalian mitochondrial DNA: Structure-function model and evolutionary pattern. J Mol Evol. 1991; 33: 83-91.

Sack MN. Mitochondrial depolarization and the role of uncoupling proteins in ischemia tolerance. Cardiovasc Res. 2006; 72: 210-9. Review.

Salas-Vidal E, Lomeli H, Castro-Obregon S, Cuervo R, Escalante-Alcalde D, Covarrubias L. Reactive oxygen species participate in the control of mouse embryonic cell death. Exp Cell Res. 1998; 238: 136-47.

Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell 1997; 91: 443-46.

Salvi M, Battaglia V, Brunati AM, La Rocca N, Tibaldi E, Pietrangeli P, Marcocci L, Mondov? B, Rossi CA, Toninello A. Catalase takes part in rat liver mitochondria oxidative stress defense. J Biol Chem. 2007; 282: 24407-2441.

Santore MT, McClintock DS, Lee VY, Budinger GR, Chandel NS. Anoxia-induced apoptosis occurs through a mitochondria-dependent pathway in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2002; 282(4): L727-34.

Saotome M, Katoh H, Yaguchi Y, Tanaka T, Ti Urushida, Satoh H, Hayashi H. Transient opening of mitochondrial permeability transition pore by reactive oxygen species protects myocardium from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2009; 296: H1125-32.

Saraste M. Oxidative phosphorylation at the fin de siècle. Science 1999; 283: 1488-93.

Sarkela T, Berthiaume J, Elfering S, Gybina A, Giulivi C. The modulation of oxygen radical production by nitric oxide in mitochondria. J Biol Chem. 2001; 276: 6945-9.

Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001; 30(11): 1191-212.

Schafer FQ, Buettner GR. Redox state and redox environment in biology. In : R.J. Forman, J. Fukuto, and M.Torres, eds. Signal transduction by reactive Oxygen and Nitrogen Species : pathways and chemical principles. Kluwer Academic Publ. 2003, Chapter 1.

Schägger H. Quantification of oxidative phosphorylation enzymes after blue native electrophoresis and two-dimentional resolution : normal complex I protein amounts in Parkinson’s disease conflict with reduced catalytic activities. Electrophoresis 1995 ; 16 : 763-70.

Scheibye-Knudsen M, Quistor B. Regulation of mitochondrial respiration by inorganic phosphate; comparing permeabilized muscle fibers and isolated mitochondria prepared from type-1 and type-2 rat skeletal muscle. Eur J Appl Physiol. 2009; 105: 279-87.

Schinzel AC, Takeuchi O, Huang ZH, Fisher JK, Zhou ZP, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA. 2005; 102: 12005-10.

Schnellmann RG, Gilchrist SM, Mandel LJ. Intracellular distribution and depletion of glutathione in rabbit renal proximal tubules. Kidney Int. 1988; 34(2): 229-33.

Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 2005; 308(5730): 1909-11.

Schroedl C, McClintock DS, Budinger GR, Chandel NS. Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol. 2002; 283(5): L918-21.

Schultz BE, Chan SI. Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Annu Rev Biophys Biomol Struct. 2001; 30: 23-65.

Sedova M, Dedkova EN, Blatter LA. Integration of rapid cytosolic Ca2+ signals by mitochondria in cat ventricular myocytes. Am J Physiol Cell Physiol. 2006; 291: C840-50.

Seifert EL, Bezaire V, Estey C, Harper ME. Essential role for uncoupling protein-3 in mitochondrial adaptation to fasting but not in fatty acid oxidation or fatty acid anion export. J Biol Chem. 2008; 283: 25124-131.

Senft AP, Dalton TP, Nebert DW, Genter MB, Hutchinson RJ, Shertzer HG. Dioxin increases reactive oxygen production in mouse liver mitochondria. Toxicol Appl Pharmacol. 2002a; 178: 15-21.

Senft AP, Dalton TP, Nebert DW, Genter MBH, Puga A, Hutchinson RJ, Kerzee JK, Uno S, Shertzer HG. Mitochondrial reactive oxygen production is dependent on the aromatic hydrocarbon receptor. Free Radic Biol Med. 2002b; 33: 1268-78.

Seo MS, Kang SW, Kim K, Baines IC, Lee TH, Rhee SG. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem. 2000; 275(27): 20346-54.

Shafir I, Feng W, Shoshan-Barmatz V. Dicyclohexylcarbodiimide interaction with the voltage-dependent anion channel from sarcoplasmic reticulum. Eur J Biochem. 1998; 253(3): 627-36.

Sharma MR, Koc EC, Datta PP, Booth TM, Spremulli LL, Agrawal RK. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 2003;115: 97-108.

Shelton MD, Mieyal JJ. Regulation by reversible S-glutathionylation: molecular targets implicated in inflammatory diseases. Mol Cells 2008; 25(3): 332-46. Review.

Shen D, Dalton TP, Nebert DW, Shertzer HG. Glutathione redox state regulates mitochondrial reactive oxygen production. J Biol Chem. 2005; 280: 25305-12.

Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med. 2007; 204(9): 2089-102.

Shoshan-Barmatz V, Israelson A. The Voltage-dependent anion channel in endoplasmic/sarcoplasmic reticulum: characterization, modulation and possible function. J Membrane Biol. 2005; 204: 57-66.

Simon HU, Yehia-Haj A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis function. Apoptosis 2000; 5: 415-8.

Simmons TW, Jamall IS. Relative importance of intracellular glutathione peroxidase and catalase in vivo for prevention of peroxidation to the heart. Cardiovasc Res. 1989; 23(9): 774-9.

Skulachev VP. Uncoupling: New approaches to an old problem of bioenergetics. Biochim Biophys Acta 1998; 1363: 100-24.

Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG, Kopnin BP, Korshunova GA, Lichinitser MR, Obukhova LA, Pasyukova EG, Pisarenko OI, Roginsky VA, Ruuge EK, Senin II, Severina II, Skulachev MV, Spivak IM, Tashlitsky VN, Tkachuk VA, Vyssokikh MY, Yaguzhinsky LS, Zorov DB. An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta 2009; 1787: 437-61.

Smith RAJ, Porteous CM, Coulter CV, Murphy MP. Targeting an antioxidant to mitochondria. Eur J Biochem. 1999; 263: 709-16.

Smith RA, Adlam VJ, Blaikie FH, Manas AR, Porteous CM, James AM, Ross MF, Logan A, Cocheme HM, Trnka J, Prime TA, Abakumova I, Jones BA, Filipovska A, Murphy MP. Mitochondria-targeted antioxidants in the treatment of disease. Ann NY Acad Sci. 2008; 1147: 105-11.

Song Y, Driessens N, Costa M, De Deken X, Detours V, Corvilain B, Maenhaut C, Miot F, Van Sande J, Many MC, Dumont JE. Roles of hydrogen peroxide in thyroid physiology and disease. J Clin Endocr Metab. 2007; 92(10): 3764-73. Review.

Soule BP, Hyodo F, Matsumoto K, Simone NL, Cook JA, Krishna MC, Mitchell JB. The chemistry and biology of nitroxide compounds. Free Radic Biol Med. 2007; 42: 1632-50.

Spyrou G, Enmark E, Miranda-Vizuete A, Gustafsson J. Cloning and expression of a novel mammalian thioredoxin. J Biol Chem. 1997; 272: 2936-41.

Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1998; 1: 949-57.

St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem. 2002; 277: 44784-90.

Starkov AA, Fiskum G. Myxothiazol induces H2O2 production from mitochondrial respiratory chain. Biochem Biophys Res Comm. 2001; 281: 645-50.

Starkov AA, Fiskum G. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem. 2003; 86: 1101-7.

Starkov AA. Protein-mediated energy-dissipating pathways in mitochondria. Chem-Biol Interactions. 2006; 161: 57-68.

Steffen M, Sarkela TM, Gybina AA, Steele TW, Trasseth NJ, Kuehl D, Giulivi C. Metabolism of S-nitrosoglutathione in intact mitochondria. Biochem J. 2001; 356(Pt 2): 395-402.

Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996; 347: 781-6.

Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995; 270: 296-9.

Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397(6718): 441-6.

Szeto HH. Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. Am Ass Pharmac Scientists J. 2006a; 8: E521-31.

Szeto HH. Cell-permeable, mitochondrial-targeted, peptide antioxidants. Am Ass Pharmac Scientists J. 2006b; 8: E277-83.

Talbot DA, Lambert AJ, Brand MD. Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3. FEBS Lett. 2004; 556: 111-5.

Tamura T, Stadtman TC. A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci USA 1996; 93(3): 1006-11.

Tanaka A, Chance B, Quistor VB. A possible role of inorganic phosphate as a regulator of oxidative phosphorylation in combined urea synthesis and gluconeogenesis in perfused rat liver. J Biol Chem. 1989; 264: 10034-40.

Tatoyan A, Giulivi C. Purification and characterization of a nitric oxide synthase from rat liver mitochondria. J Biol Chem. 1998; 273: 11044-8.

Tauskela JS. MitoQ-a mitochondria-targeted antioxidant. IDrugs 2007; 10: 399-412.

Taylor ER, Hurrell F, Shannon RJ, Lin TK, Hirst J, Murphy MP. Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem. 2003; 278: 19603-10.

Thomas DA, Stauffer C, Zhao K, Yang H, Sharma VK, Szeto HH, Suthanthiran M. Mitochondrial targeting with antioxidant peptide SS-31 prevents mitochondrial depolarization, reduces islet cell apoptosis, increases islet cell yield, and improves posttransplantation function. J Am Soc Nephrol. 2007; 18(1): 213-22.

Tornwall ME, Virtamo J, Haukka JK, Albanes D, Huttunen JK. Alpha-tocopherol (vitamin E) and beta-carotene supplementation does not affect the risk for large abdominal aortic aneurysm in a controlled trial. Atherosclerosis 2001; 157: 167-73.

Torres J, Cooper CE, Wilson MT. A common mechanism for the interaction of nitric oxide with the oxidized binuclear centre and oxygen intermediates of cytochrome c oxidase. J Biol Chem. 1998; 273: 8756-66.

Trnka J, Blaikie FH, Smith RA, Murphy MP. A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. Free Radic Biol Med. 2008; 44: 1406-19.

Truscott KN, Wiedemann N, Rehling P, Müller H, Meisinger C, Pfanner N, Guiard B. Mitochondrial import of the ADP/ATP carrier: the Essential TIM complex of the intermembrane space is required for precursor release from the TOM complex. Mol Cell Biol. 2002; 22: 7780-9.

Tuominen EK, Wallace CJ, Kinnunen PK. Phospholipid-cytochrome c interaction: evidence for the extended lipid anchorage. J Biol Chem. 2002; 277(11): 8822-6.

Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980; 191: 421-7.

Turrens JF, Alexandre A, Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys. 1985; 237(2): 408-14.

Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003; 552: 335-44. Review.

Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J. Redox control of cell death. Antioxid Redox Signal. 2002; 4(3): 405-14. Review.

Vahsen N, Candé C, Brière JJ, Bénit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schägger H, Rustin P, Kroemer G. AIF deficiency compromises oxidative phosphorylation. EMBO J. 2004; 23: 4679-89.

Vande Velde C, Miller TM, Cashman NR, Cleveland DW. Selective association of misfolded ALS-linked mutant SOD1 with the cytoplasmic face of mitochondria. Proc Natl Acad Sci USA 2008; 105(10): 4022-7.

Vijayasarathy C, Damle S, Prabu SK, Otto CM, Avadhani NG. Adaptive changes in the expression of nuclear and mitochondrial encoded subunits of cytochrome c oxidase and the catalytic activity during hypoxia. Eur J Biochem. 2003; 270(5): 871-9.

Vlamis-Gardikas A, Holmgren A. Thioredoxin and glutaredoxin isoforms. Methods Enzymol. 2002; 347: 286-96.

Voet D, Voet JG. Biochimie. De Boeck éd., 2005, p. 1509.

Von Ahsen O, Waterhouse NJ, Kuwana T, Newmeyer DD, Green DR. The 'harmless' release of cytochrome c. Cell Death Differ. 2000; 7(12): 1192-9. Review.

Voos W, Martin H, Krimmer T, Pfanner N. Mechanisms of protein translocation into mitochondria. Biocim Biophys Acta 1999; 1422: 235-54.

Walter L, Nogueira V, Leverve X, Heitz MP, Bernardi P, Fontaine E. Three classes of ubiquinone analogs regulate the mitochondrial permeability transition pore through a common site. J Biol Chem. 2000; 275: 29521-7.

Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001; 15(22): 2922-33.

Wang J, Boja ES, Tan W, Tekle E, Fales HM, English S, Mieyal J.J, Chock PB. Reversible glutathionylation regulates actin polymerization in A431 cells. J Biol Chem. 2001; 276: 47763-6.

Wang J, Tekle E, Oubrahim H, Mieyal JJ, Stadtman ER, Chock PB. Stable and controllable RNA interference: investigating the physiological function of glutathionylated actin. Proc Natl Acad Sci USA. 2003; 100: 5103-6.

Wang D, Masutani H, Oka SI, Tanaka T, Yamaguchi-Iwai Y, Nakamura H, Yodoi J. Control of mitochondrial outer membrane permeabilization and Bcl-xL levels by thioredoxin 2 in DT40. Cells J Biol Chem. 2006; 281: 7384-91.

Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, Wang X, Li K, Han P, Zheng M, Yin J, Wang W, Mattson MP, Kao JPY, Lakatta EG, Sheu SS, Ouyang K, Chen J, Dirksen RT, Cheng H. Superoxide flashes in single mitochondria. Cell 2008; 134(2): 279-90.

Watabe S, Hiroi T, Yamamoto Y, Fujioka Y, Hasegawa H, Yago N, Takahashi SY. SP-22 is a thioredoxin-dependent peroxide reductase in mitochondria. Eur J Biochem. 1997; 249: 52-60.

Watson WH, Yang X, Choi YE, Jones DP, Kehrer JP. Thioredoxin and its role in toxicology. Toxicol Sci. 2004; 78: 3-14.

Weber NC, Schlack W. Inhalational anaesthetics and cardioprotection. In: Modern Anesthetics. Handbook of Experimental Pharmacology. Springer-Verlag, Berlin, Heidelberg, 2008, pp. 187-207.

Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res. 2003; 93: 292-301.

Wipf P, Xiao J, Jiang J, Belikova NA, Tyurin VA, Fink MP, Kagan VE. Mitochondrial targeting of selective electron scavengers: synthesis and biological analysis of hemigramicidin-TEMPO conjugates. J Am Chem Soc. 2005; 127: 12460-1.

Wolin MS, Ahmad M, Gupta SA. Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH. Am J Physiol Lung Cell Mol Physiol 2005; 289: L159-73.

Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 2003a; 300: 650-3.

Wood ZA, Schröder E, Harris RJ, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003b; 28(1): 32-40.

Woodfield K, Ruck A, Brdiczka D, Halestrap AP. Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J. 1998; 336: 287-90.

Wudarczyk J, Debska G, Lenartowicz E. Relation between the activities reducing disulfides and the protection against membrane permeability transition in rat liver mitochondria. Arch Biochem Biophys. 1996; 327: 215-21.

Wyllie AH, Morris RG, Smith AL, Dunlop D. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol. 1984; 142: 66-77.

Xia L, Nordman T, Olsson JM, Damdimopoulos A, Bjorkhem-Bergman L, Nalvarte I, Eriksson LC, Arner ESJ, Spyrou G, Björnstedt M. The mammalian cytosolic selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress. J Biol Chem. 2003; 278(4): 2141-6.

Yamagata H, Shimizu S, Nishida Y, Watanabe Y, Craigen WJ, Tsujimoto Y. Requirement of voltage-dependent anion channel 2 for pro-apoptotic activity of Bax. Oncogene 2009; 28(40): 3563-72.

Yamagishi SI, Edelstein D, Du XL, Kaneda Y, Guzmán M, Brownlee M. Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J Biol Chem. 2001; 276(27): 25096-100.

Yamashita H, Avraham S, Jiang S, London R, Van Veldhoven PP, Subramani S, Rogers RA, Avraham H. Characterization of human and murine PMP20 peroxisomal proteins that exhibit antioxidant activity in vitro. J Biol Chem. 1999; 274: 29897-904.

Yang X, Chang HY, Baltimore D. Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1998; 1: 319-25.

Ye H, Cande C, Stephanou NC, Jiang S, Gurbuxani S, Larochette N, Daugas E, Garrido CN, Kroemer G, Wu H. DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nature Structural Biol. 2002; 9: 680-4.

Yuste VJ, Moubarak RS, Delettre C, Bras M, Sancho P, Robert N, d'Alayer J, Susin SA. Cystein protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release. Cell Death Differ. 2005; 12: 1445-8.

Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000; 342(3): 154-60.

Zackova M, Kobisova E, Urbankova E, Jezek P. Activating ω6 polyunsaturated fatty acids and inhibitory purine nucleotides are high affinity ligands for novel mitochondrial uncoupling proteins UCP2 and UCP3. J Biol Chem. 2003; 278: 20761-9.

Zhang N. Characterization of the 5' flanking region of the human MnSOD gene. Biochem Biophys Res Commun. 1996; 220: 171-80.

Zhang J, Jin B, Li L, Block ER, Patel JM. Nitric oxide-induced persistent inhibition and nitrosylation of active site cysteine residues of mitochondrial cytochrome-c oxidase in lung endothelial cells. Am J Physiol Cell Physiol. 2005; 288: C840-9.

Zhang DX, Gutterman DD. Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol. 2007; 292: H2023-31.

Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem. 2004; 279: 34682-90.

Zhong L, Arnér ES, Ljung J, Aslund F, Holmgren A. Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue. J Biol Chem. 1998; 273(15): 8581-91.

Zhong L, Holmgren A. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations. J Biol Chem. 2000; 275(24): 18121-8.

Zhou P-J, Zhoub H-T, Yib P, Liua Y, Wuc Z-B, Qua S-S, Zhu Y-G. Microcalorimetric studies on the thermogenesis of energy release of mitochondria isolated from rice. Microchem J. 2001; 69: 5-11.

Zhou J, Damdimopoulos AE, Spyrou G, Brune B. Thioredoxin 1 and thioredoxin 2 have opposed regulatory functions on hypoxia-inducible factor-1{alpha}. J Biol Chem. 2007; 282: 7482-90.

Zizi M, Forte M, Blachly-Dyson E, Colombini M. NADH regulates the gating of VDAC, the mitochondrial outer membrane channel. J Biol Chem. 1994; 269: 1614-6.

Zoratti M, Szabò I. The mitochondrial permeability transition. Biochim Biophys Acta 1995; 1241(2): 139-76. Review.

Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med. 2000; 192: 1001-14.

Zorov DB, Juhaszova M, Yaniv Y, Nuss HB, Wang S, Sollott SJ. Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc Res. 2009; 83: 213-25.

Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90: 405-13.

Zou H, Li Y, Liu X, Wang X. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem. 1999; 274: 11549-56.


Troubles de l'oxygénation et mitochondries - Sommaire
Mitochondrie et oxygénation - Sommaire
Mitochondries et métabolisme de l'oxygène - Introduction
Courrier
     
retour à la page d'accueil retour à la page L'oxygène en Pathologie des Mammifères retour à la page Initiation au Métabolisme de l'Oxygène